電磁両立性(EMC)セミナー (3)

東京都市大学 工学部 電気電子通信工学科 平野 拓一

E-mail: thirano@tcu.ac.jp

COMSOL技術セミナー

http://www.takuichi.net/em_analysis/fem/fem_j.html

2019/9/3

No. 1

- 1. 電磁界シミュレーション概要
 - 1.1 時間/周波数領域解析
 - 1.2 低周波近似について
 - 1.3 電磁界解析手法概要(FEM/MoM/FDTD)
 - 1.4 電磁界解析の種類(励振問題、固有値問題)
 - 1.5 電磁界シミュレーションの勘所
- 2. EMC対策の解析事例(ミリ波帯オンチップ素子の電磁界解析)
 - 2.1 素子のモデル化
 - 2.2 ボンディングワイヤとパッケージの接続
- 2.3 RFボード設計の注意点(線路コーナー、スル ーホールなど)
 - 2.4 パッドの励振モデル化

3. 他機関によるEMC対策のためのシミ ュレーション活用事例の紹介

自動車、航空機の対策事例など(※当 日内容が変更となる場合がございます) 4. まとめ

4.1 シミュレーションの有用性

4.2 シミュレーションと実験の差異について(モデル化)

15:30-15:40:休憩 15:40-16:10:COMSOL Multiphysicsの RFモジュールと事例の紹介 16:10-16:30:質疑応答

1. 電磁界シミュレーション概要

微分形
$$\begin{cases} \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{H} = \mathbf{i} + \frac{\partial \mathbf{D}}{\partial t} \end{cases}$$

$$\begin{cases} \oint_{C} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \iint_{S} \mathbf{B} \cdot d\mathbf{S} \\ \oint_{C} \mathbf{H} \cdot d\mathbf{l} = \iint_{S} \mathbf{i} \cdot d\mathbf{S} + \frac{\partial}{\partial t} \iint_{S} \mathbf{D} \cdot d\mathbf{S} \end{cases}$$

積分形

マクスウェルの方程式と電磁界シミュレータの役割4

マクスウェルの方程式

ファラデーの法則

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$

アンペアの法則
 $\nabla \times \mathbf{H} = \mathbf{i} + \varepsilon \frac{\partial \mathbf{E}}{\partial t}$

電磁界シミュレータの目的は、上のマクスウェルの方程式を速く、精度良く、なるべく一般の構造を解くこと。境界条件を指定する必要がある(→微分方程式論の境界値問題)。

解くために必要な条件(解析の前準備)

1. 構造および媒質(ε, μ, σ)

- 2. 境界条件
- 3. 励振波源

上をまとめて「解析モデル」と呼ぶ

内部: Maxwellの方程式

静電界/静磁界/準静電界/準静磁界

時間領域と周波数領域

No. 6

波動方程式(EまたはHのみの式)

同様に、Eを消去してHの方程式を導くこともできる

COMSOL技術セミナー

T. Hirano

励振問題と非励振問題

電磁界解析法の種類

■FDTD法 モーメント法 (MoM) ■有限要素法 (FEM)

https://www.comsol.com/blogs/efficiently-meshyour-model-geometry-with-meshing-sequences/

https://www.aetjapan.com

各種電磁界解析法の比較

	FDTD	МоМ	FEM
メッシュ分割	3D (空間全体)	2D (物体表面)	3D (空間全体)
解法	陽解法(安定条件必 須)	陰解法(安定)	陰解法(安定)
行列の疎密	N/A	密	疎 (高速化可。メモリも節 約可)
周波数/時間領域	時間領域	周波数領域	周波数領域
得意な問題	人体解析	RCS解析	マイクロ波・ミリ波回路
その他特徴	開放問題では吸収境界 条件が必須	開放問題は最初から厳 密に組み込まれている	開放問題では吸収境界 条件が必須

備考: 行列方程式をまともに解くにはO(N²)のメモリ、O(N³)の計算時間が必要となる。

励振の種類

■導波路モード励振 (Wave Port, Waveguide Port) ■集中ポート (Lumped Port, Lump Port) ■平面波入射 (散乱の解析)

励振部モデル化/境界条件の設定は解析の要

励振方法1:集中ポート

COMSOL技術セミナー

T. Hirano

励振方法2: 導波路モード励振 (Wave Port) No. 14

 導波路モード励振は境界にて行う。
 導波路モード給電では、導波路部 分は少なくとも1/2波長以上はモデル 化する。(不連続部で発生した高次 モードが十分減衰するように)

■単ーモード条件であるかどうか確 認する。多モードならば、それらも考 慮して解析する。

■開放型線路の場合には電磁界 モードが端で十分減衰する程度に 広い面積でポートを定義する。

様々な伝送線路

No. 15

励振方法3: 平面波入射

吸収境界条件

■吸収境界条件(ABC, Absorbing Boundary Condition):FEM, FDTDは このように全空間にメッシュを切るた め、開放空間を模擬する。

■物体からABCまでの距離: 1/2波 長以上

■ABCは垂直入射平面波をうまく吸 収するように出来ているので、なるべ く離した方が良い。ただし、あまり空 間を大きくすると無駄に計算時間が かかるのでトレードオフとなる。

その他境界条件

電気壁 (PEC)・・・電界の接線成分が0
 磁気壁 (PMC)・・・磁界の接線成分が0
 ・対称構造の解析領域の削減などで用いる $\delta = \sqrt{\frac{2}{\omega\mu\sigma}} R_s = \frac{2}{\delta\sigma}$ 表面インピーダンス

・導電率が大きな有限値で、表皮厚が薄くて波長が非常に短 い導体内部を解析するかわりに表面インピーダンス近似を用い る。

・波長に比して微小なコルゲーション構造などの解析に用いる。
 ■周期境界壁

・周期構造の1周期の解析に用いる。

・大規模アレーアンテナ、EBG構造、メタマテリアル構造などの解析でよく用いられる。

シミュレータの検討

電磁界シミュレーションの対象のモデル化

規範問題から同じ励振構造で練習し、結果が正しいことを確認した後で解析したい対象をモデル化することをお勧めします。

エレクトロニクスシミュレーション研究会の規範問題

電子情報通信学会エレクトロニクスシミュレーション研究専門委員会

http://www.ieice.org/~est/

T. Hirano

2. EMC対策の解析事例 (ミリ波帯オンチップ素子の電磁界解析)

No. 23

2.1 素子のモデル化 2.2 ボンディングワイヤとパッケージの接続 2.3 RFボード設計の注意点(線路コーナー、ス ルーホールなど) 2.4 パッドの励振モデル化

http://www.takuichi.net/hobby/edu/em/em-j.html

上記HPにてSパラメータ(波の進行方向で分類して表現)の基礎について解説しています。

2.1 素子のモデル化

No. 25

De-embeddingについて、PADのモデル化、線路の解析

COMSOL技術セミナー

T. Hirano, K. Okada, J. Hirokawa, and M. Ando, "Accuracy Investigation of De-embedding Techniques Based on Electromagnetic Simulation for On-wafer RF Measurements," InTech Open Access Book, Numerical Simulation - From Theory to Industry, ISBN 978-953-51-0749-1, Chapter 11, pp.233-258, September 19, 2012. (Open Access)

<u>http://www.intechopen.com/books/numerical-simulation-from-theory-to-industry/accuracy-</u> investigation-of-de-embedding-techniques-based-on-electromagnetic-simulation-for-on-wafer-r

2.2 チップのワイヤボンディングからの不要放射の例 No. 26

2.2 チップのワイヤボンディングからの不要放射の例

No. 27

2.3 接続部/変換部の不要放射の例: Model^{No. 28}

Excitation Model

S11

penta_patch

E-field Animation

E-field Animation (y-z plane)

E-field Animation (x-z plane)

2.3 MSLコーナーからの不要放射の例

直角コーナー

直角コーナー

No. 37

直角コーナ-

円弧コーナー

No. 39

円弧コーナ

切り欠けコーナー

No. 41

切り欠けコーナ・

2.3 結合線路

No. 43

2.3 結合線路

2.4 GSGパッドの励振モデル

プローブ測定

GSGパッドの構造

GSGプローブの写真(コンタクト基板)

GSGプローブの写真(ISS; 校正基板)

T. Hirano

GSGプローブの写真(パッド)

GSGプローブ先端の写真

解析における励振部のモデル化

電磁界解析モデル

E-Field Animation

Vector E-Field Animation

解析結果4ポートから実測2ポートへの変換^{No.54}

2 Lumped PortからGSG 1ポートへの変換 ^{No. 55}

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

プローブ部の導波路はシングルモードなので、次の条件が成り立つ

 $a_1 = a_2 = a$

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a \\ a \end{bmatrix}$$

$$\begin{cases} b_1 = (S_{11} + S_{12})a \\ b_2 = (S_{21} + S_{22})a \end{cases}$$
単モードとパッド部の構造の対称性より、
$$S_{11} = S_{22} \qquad S_{12} = S_{21}$$

$$b_1 = b_2 (= b)$$
反射係数
$$\Gamma = \frac{b}{a} = S_{11} + S_{12} = S_{21} + S_{22}$$

2 Lumped Portから差動GSSG 1ポートへの変換⁵⁶

2.5 mm x 2.5 mm CMOS 0.18 um

COMSOL技術セミナー

チップ写真2

COMSOL技術セミナー

T. Hirano

5 mm x 5 mm CMOS 0.18 μm

Thruパターン

No. 59

 $420\ \mu m$

Thruパターン (Sパラメータ)

Lineパターン

1020 µm

No. 62

Lineパターン (Sパラメータ)

クロストークによる結合量評価パターン

770um

Port1

クロストークによる結合量評価パターン(Sパラメー^Nタ)

Lumped Portの位置*d*_lおよび幅w依存性^{No. 65}

反射係数 S₁₁

COMSOL技術セミナー

T. Hirano

透過係数 S₂₁

位置ずれおよび幅の影響は小さい

端部励振モデル1

端部励振モデル2

パッド下垂直励振モデル

ワイヤボンディング

ボンディングワイヤの長さ: 400 um-450 um

ワイヤボンディング

ワイヤボンディング

ワイヤボンディング

全体解析モデル

Global

ワイヤボンディング

freq(1)=1 GHz Surface: Instantaneous electric field norm (V/m) ×10⁴ 5 4.5 4 3.5 2.5 1.5 0.5 0

COMSOL技術セミナー

No. 77

ワイヤボンディング

T. Hirano

ワイヤボンディング

freq(8)=22 GHz Surface: Instantaneous electric field norm (V/m) ×10⁴ 5 4.5 4 3.5 2.5 2 1.5 0.5

COMSOL技術セミナー

No. 79

ワイヤボンディング

ワイヤボンディング

MSL設計

http://www.takuichi.net/hobby/edu/em/mw_circuit/transmission_lines/msl/

MSL設計

http://www.takuichi.net/hobby/edu/em/mw_circuit/transmission_lines/msl/

3. 他機関によるEMC対策のための シミュレーション活用事例の紹介

EMC対策例

絶縁破壊電圧: 空気 30 kV/cm 1. ESD(静電気放電、サージ) ダイオード(、バリスタ、ガスアレスタ) 2. ノイズ抑圧(信号線) フィルタ、フェライトコア 3. 直流電源安定化 バイパスコンデンサ、チョークコイル 4. 不要放射抑圧、外乱ノイズ遮断 電波吸収材料、シールド(金属) $\overline{000}$ Chin **PCB**

COMSOL技術セミナー

E

参考文献

評価アンテナ設計

1. 張間 他, "近接放射イミュニティ試験に用いるTEMホーンプロトタイプの評価", IEICE総大, B-4-45, 2019年3月.

車載

1. 松沢他,"車室内ワイヤレス給電システムのSAR評価", IEICE総大, B-4-35, 2019年3月.

電源安定化

- 1. 三井 他, "車載通信システムのイミニュティ評価用BAN(Broadband Artificial Network)の高周 波化に向けた改良", IEICE総大, B-4-25, 2019年3月.
- 2. 小林他, "両側磁気結合を用いたノイズフィルタのIC動作状態における性能検証", IEICE総 大, B-4-21, 2019年3月.

ノイズ除去

1. 松井 他, "フェライトコアを用いた6.6kV分岐架空配電系統のTDRパルス経路選択手法", IEICE総大, B-4-30, 2018年9月.

航空機・鉄道

- T. Sekiguchi et al. "Numerical estimation of propagation path loss for wireless link design of WAIC systems installed on outside aircraft cabin based on large-scale FDTD simulation," IEICE ComEx, Vol.8, No.5, pp.129-134, 2018.
- 2. 酒井 他,"複数台車を考慮した磁気浮上鉄道による沿線の通信線の鎖交磁束の周波数スペクトル解析", IEICEソ大, B-4-29, 2018年9月.

参考文献

IC設計

- 1. 渡邊他, "ICチップによる電磁輻射のパッケージング依存性", IEICEソ大, B-4-1, 2018年9月.
- 2. 椙本 他, "ICチップによる電磁輻射と移動通信干渉の評価", IEICEソ大, B-4-2, 2018年9月.
- 3. 高橋 他, "複合磁性ペーストを用いたノイズ抑制体の実装方法", IEICEソ大, B-4-1, 2017年3月.

実際に使用されるケーブル

外部からのノイズ受信の検討モデル

モデル No. 93 車載(CAN)を想定したしシミュレータの使い方 平面波入射 ハーネスで接続した線路の特性、ノイズ受信の影響 解析のための基礎検討モデル。 $V_0 = -\int_{\Gamma_v} \mathbf{E} \cdot d\mathbf{l}$ 0.05 m 0 電圧測定 -0.05 Lumped Portを設定 0.05

実際使用するデバイス(チップ等) の入力/出力インピーダンスを有 するLumped Portでモデル化 0

-0.05

0.05

0

m

-0.05

両端 Lumped Port

940 MB | 1109 MB

Lumped Port とLumped Element

• 🗅 📂 🗔 🔍 🕨 かぐ 暗 后 🖻 📋	👿 😡 🖪 • I	diff_common_port_elem.mph - COMSOL Multiphysics	- 🗆 X
File Home Definitions Geometry	Materials Physics Mesh Study Results	Developer	E
Model Builder ← → ↑ ↓ ☞ - □↑ □↓ □ -	Settings Properties	Graphics Convergence Plot 1	·* .]
 (a) diff_common_port_elem.mph (root) (a) Global Definitions (b) Parameters (c) Materials (c) Component 1 (comp1) (c) Definitions (c) Materials (c) Component 1 (comp1) (c) Materials (c) Materials	= Evaluate ▼ Label: S-Parameter (emw)	freq(1)=1 GHz Surface: Electric field normo@//m)	m
	◆ Data Data set: Study 1/Solution ◆		-0 5 750
	Expressions Expression Unit Description		650
	20*log10(abs(emw.S1 arg(emw.S11) rad 20*log10(abs(emw.Vel arg(emw.Velement_1) rad		> 600 0 - 550
			500
	<pre></pre>	Element (50 Q)の受信電圧	0.05 400
	Description:	ed PortのSパラと同じ	350
	Data Series Operation	Messages Progress Log Table 2	~ 1.5
	Operation: None 🔻	### #	1)) aro(emw,Velement 1) (r
		1.0000 -3.6596 0.31862 -5.3360	-1.2880

COMSOL技術セミナー

954 MB | 1098 MB

No. 95

Lumped Port の設定

Settings Properties		
Lumped Port		
Label: Lumped Port 1		
 Boundary Selection 		
Selection: Manual	•	
Active 20	* + = - ©	
> Override and Contribution		
Equation		
 Lumped Port Properties 		
Lumped port name:		
1		
Type of lumped port:		
Uniform		
Terminal type:		
Cable 🔹		
Wave excitation at this port:		
Off •		
 Settings 		
Characteristic impedance:		
Z _{ref} 50[ohm]	Ω	

Lumped Elementの設定

Settings Properties 👻 🖡			
Lumped Element			
Label: Lumped Element 1			
 Boundary Selection 			
Selection: Manual 🔻			
Active 32	* + = - ©		
Override and Contribution			
Equation			
 Lumped Element Properties 			
Lumped element name:			
1			
Type of lumped element:			
Uniform 👻			
▼ Settings			
Lumped element device:			
User defined 🔹			
Lumped element impedance:			
$Z_{element}$ 50[ohm] Ω			

平面波入射 (Scattered Field)

平面波入射による受信電圧

	🔣 🕅 🗟 • I diff_common_scat_field.mph - COMSOL Multiphysics — 🗆 X
Model Builder ← → ↑ ↓ ☞ ↓ ☞ ↓ □↑ □↓ □↓ ↓ Global Definitions Pi Parameters 	Setting: Properties Global Evaluation = Evaluate • Labet: Induced Voltage • Data Data set: Sudy 1/Solution 1 (sol1) • Expressions • Expressions • Expression: • • • • • • • • • • • • • • • • • • •
< >>	Tota Series Operation Operation: None None Messages Progress Log Table 3 Tab

COMSOL技I们セミナー

850 MB | 1038 MB

金属カバー

COMSOL技術セミナー

833 MB | 1029 MB

T. Hirano

上部だけ金属カバー

🕛 🗅 📂 🖬 😣 🕨 ちぐ 暗 哈 🕀 🗓		diff_common_scat_field_shield_pec2.mph - COMSOL Multiphysics - D X		
File Home Definitions Geometry	Materials Physics Mesh Study Results	Developer ?		
Model Builder	Settings Properties 👻 🖡	Graphics Convergence Plot 1		
 diff_common_scat_field_shield_pec2.mph (rc Global Definitions Parameters Materials Component 1 (comp1) Definitions Component 1 (comp1) Definitions Cecomponent 1 (comp1) Electromagnetic Waves, Frequency De Wave Equation, Electric 1 Perfect Electric Conductor 1 Initial Values 1 Scattering Boundary Condition 1 Lumped Port 1 Perfect Electric Conductor 2 Perfect Electric Conductor 3 Lumped Element 1 Mesh 1 Mesh 1 Study 1 Ena Sests Views Second Values Second Values Second Values Electric Field (emw) Multislice Export Reports 	Global Evaluation = Evaluate Label: Induced Voltage	Q Q : ① ① Freq(1)=1 GHz Multislice: Instantaneousrelectric field norm (V/m) m		
	✓ Data Data set: Study 1/Solutior Parameter selection (freq): All ✓ Expression Unit Description abs(emw.Velement_1) V			
	Description:	y _ x _ 0 _ 0.05 m		
	Data Series Operation Operation: None	Messages Progress Log Table 3 ~ # × Image: Section 2010 251 253 0.05 Image: Image: Section 2010 Image: Image: Section 2010 Image: Image: Image: Section 2010 Image: Image: Section 2010 Image: Image: Section 2010 Image: Image: Section 2010 Image: Image: Image: Section 2010 Image: Image: Section 2010 Image: Image: Section 2010 Image: Image: Image: Section 2010 Image: Image: Section 2010 Image: Image: Image: Section 2010 Image: I		

COMSOL技術セミナー

T. Hirano

ダイポールアンテナへの平面波照射(受信)^{No. 102}

ツイストペアケーブル

ツイストペアケーブル

ツイストペアケーブル

ツイストペアケーブル

平行2本線路

平行2本線路

平行2本線路

平行2本線路

No. 114 線路を挿入した場合の入力インピーダンス

http://www.takuichi.net/hobby/edu/em/mw_circuit/distributed_circuit_matrix/circuit_matrix.pdf

Page 8

$$Z_{in} = Z_0 \frac{Z_L + j Z_0 \tan(\beta \ell)}{Z_0 + j Z_L \tan(\beta \ell)}$$

$$= Z_L \frac{Z_0 + j (Z_0^2 / Z_L) \tan(\beta \ell)}{Z_0 + j Z_L \tan(\beta \ell)}$$

$$= Z_L \frac{1 + j (Z_0 / Z_L) \tan(\beta \ell)}{1 + j (Z_L / Z_0) \tan(\beta \ell)}$$

$$\beta \ell = 2\pi \frac{\ell}{\lambda} \cong 0$$

$$Z_{in} \cong Z_L$$

$$I(-\ell)$$

$$V(-\ell)$$

$$V(-\ell)$$

$$Z_L$$

$$Z = 0$$

$$Z = -\ell$$

$$Z = -\ell$$

$$Z = 0$$

$$U(0)$$

$$Z_L$$

$$Z = 0$$

$$Z = -\ell$$

$$Z = 0$$

$$U(0)$$

$$Z_L$$

$$Z = 0$$

$$Z = 0$$

$$Z = -\ell$$

$$Z = 0$$

$$Z = 0$$

$$Z = 0$$

$$Z_L$$

$$U(0)$$

$$Z_L$$

$$Z = 0$$

$$Z$$

 $(\tan(\beta \ell) = 0$ ならいいので、 $\beta \ell = n\pi; \ell = \frac{n\lambda}{2}$ でもOK)

ツイストペアケーブル(間隔:大)

ツイストペアケーブル(間隔:大)

ツイストペアケーブル(間隔:大)

No. 117

平行2本線路(間隔:大)

平行2本線路(間隔:大)

平行2本線路(間隔:大)

平行2本線路(間隔:大)

平行2本線路(間隔:大)

COMSOL技術セミナー

No. 122

平行2本線路(間隔:大)

ツイストペアケーブル

359Ωで終端(整合)

ツイストペアケーブル

コモンモードとディファレンシャルモード

導体上の平行2本線路(4ポート)

導体上の1本線路

http://www.takuichi.net/hobby/edu/em/mw_circuit/transmission_lines/parallel/

2019.9.2 T. Hirano

グランド(無限に広いと仮定)の上の1本線の特性インピーダンスは、鏡像の原理を用いて平行2本線路 の結果から導出することができる。

電界は右図のようになっており、GND 面に 垂直に入っているので、電磁界分布は変わ らない(解の一意性)。GND から上の空間 のみを考えると、電流は同じでありながら (GND にも磁界の接線成分に比例する電流 が流れる)、電圧は電界の接線線積分なの で、半分になっている。すなわち、特性イン ピーダンス Z=V/I は平行2本線路の 1/2 の 値となる。

COMSOL技術セミナー

T. Hirano

導体上の平行2本線路(4ポート)

整合終端すればいいのか?

http://www.takuichi.net/em_analysis/canonical/coaxial_cable/comsol_coaxial_cable.pdf

■高次モードが伝搬しない条件で用いる。
 ■高次モードが伝搬可能な場合、不連続部などで高次モードにエネルギーが移ってしまうと波形がひずんだり、不要放射が生じたりする恐れがある。

4. シミュレーションの有効性

4.1 シミュレーションの有用性 4.2 シミュレーションと実験の差異について(モ デル化)

4.1 シミュレーションの有用性

- ■シミュレーション(シミュレータの使用)には最初は多くの 予算と時間がかかる。
- ■(勉強したくないのに)勉強する必要が生じる。
- ■素子、材料定数などの評価、モデル化の検証などに最初は多くの時間がかかる。

- ■最初だけ苦労すれば、あとはパラメータを変更してシミュレーションするだけ。
- ■現象を部分に分解して物理的に解釈できる。(問題が生じたときに原因、全容が把握できる)
- ■実験とのダブルチェックができる。
- ■試作回数を減らせて、結果的に経費・時間が削減できる。

■実験と合わないとき。シミュレータが悪いのか?

■実験が悪いかも。

■実験の校正が悪いかも。それがうまくできている場合は、シミュレーションで実験に対応したモデル化がうまくできていない。→励振部、境界条件が難しい。また、材料定数についても、特に高周波ではカタログ値を信頼してはいけない。

■シミュレータでメッシュの細かさが十分か(さらに細かくした場合にも結果が変わらないことを確認)