有限要素法による電磁界解析の実際 ~共振器の固有モード解析・集中定数素子などを扱う場合の解析と COMSOLにおける実際~

東京工業大学 環境·社会理工学院 平野 拓一

E-mail: hirano.t.aa@m.titech.ac.jp

過去のセミナー

有限要素法による電磁界解析の実際

ポート励振の理論とCOMSOLにおける実際 (2017/3/29) 共振器の固有モード解析・集中定数素子など を扱う場合の解析とCOMSOLにおける実際 (2017/5/11)

http://www.takuichi.net/em_analysis/fem/fem_j.html

発表の流れ

■有限要素法による電磁界シミュレーション
 ■励振方法

- 集中ポート・・・回路シミュレーションとの連成
 ポート(導波路モード励振)
- 平面波入射
- ■共振器の解析(固有値問題)
- ■静磁場との連成解析(サーキュレーター)
- ~ COMSOLによる解析例 ~

有限要素法による電磁界シミュレーション

No. 4

No. 5 有限要素法による電磁界シミュレーション

有限要素法(FEM; Finite Element Method)

電磁界解析法の1つ。他にモーメント法(MoM; Method of Moments)、FDTD法などがある。全空間に四面体でメッシュを切り、電界を未知数として解析。

支配方程式のマクスウェルの方程式を数値的に近似計算する。

励振方法

集中ポート (Lumped Port, Lump Port) 導波路モード励振 (Wave Port, Waveguide Port) 平面波入射 (散乱の解析)

励振部モデル化/境界条件の設定は解析の要 (空間内部のモデル化は誰がやっても同じ →上手い・下手はない)

励振方法1:集中ポート

■電圧・電流源励振は波長に比して微小 (集中定数)であることが基本である。 S ■微小なので、集中ポートでは印加電磁 界分布の形状にはほとんど依存しない。 ■通常、内部インピーダンスを指定する。 つまり、電圧(電界)と電流(磁界)の比を 指定する。 ■電磁界解析では、実際には表面イン ピーダンス上に電界あるいは磁界を印加 する。 $Z_{0} = V_{0} / I_{0}$ $\int V_0 = -\int_{\Gamma_V} \mathbf{E} \cdot d\mathbf{l}$ $\int I_0 = \oint_{\Gamma_V} \mathbf{H} \cdot d\mathbf{l}$

Tokyo Institute of Technology

T. Hirano

励振方法3: 平面波入射

■平面波入射の場合は、物体から吸 収境界壁までの距離は1/2波長程度 以上離す。

■RCS (Radar Cross Section)解析に 使われる。

COMSOL: 散乱境界条件 or PML HFSS: 放射境界 or PML CST: Open Boundary or PML

各励振モデルの規範問題 ~ COMSOLによる解析例 ~

エレクトロニクスシミュレーション研究会の規範問題

電子情報通信学会エレクトロニクスシミュレーション研究専門委員会

Tokyo Institute of Technology

http://www.ieice.org/es/est/activities/canonical_problems/

T. Hirano

集中ポートの例:ダイポールアンテナ

COMSOL (Model)

COMSOL (Mesh)

集中ポートの例:比較

Input Impedance of Dipole Antenna (*l*=60.5mm, *a*=0.5mm)

散乱界表示

ヘルムホルツの方程式

$$\nabla \times \left(\frac{\nabla \times \mathbf{E}}{\mu_r} \right) - k_0^2 \varepsilon_r \mathbf{E} = -jk_0 \eta_0 \mathbf{i}$$

平面波励振の例:導体球による散乱

Tokyo Institute of Technology

No. 17

RCSについて

No. 18

RCS(RADAR Cross Section), レーダー断面積, 散乱断面積 $\sigma = \lim_{R \to \infty} \left[4\pi R^2 \frac{\left| \mathbf{E}^s \right|^2}{\left| \mathbf{E}^i \right|^2} \right] = \lim_{R \to \infty} \left[4\pi R^2 \frac{\left| \mathbf{H}^s \right|^2}{\left| \mathbf{H}^i \right|^2} \right] \quad [m^2]$ デシベル→ 10 log₁₀ σ [dBsm] 10 log₁₀ (σ / λ_0^2) [dBsw]

♂は入射および散乱角度(方向)の関数となる。

レーダー方程式 (Radar Range Equation) No. 19

 $\mathbf{\nabla}$

T. Hirano

COMSOL (Model)

🔍 | 🗅 📂 🔲 國 🕨 ち さ 🖻 🛍 🖓 🔍 - | \leftrightarrow X sphere.mph - COMSOL Multiphysics (トライアルバージョン) ファイル マ ホーム 定義 ジオメトリ ? 材料 フィジックス メッシュ スタディ 結果 モデルビルダ グラフィックス 設定 特性 * 単 × # ↑ ↓ ☜ ▾ ☷↑ ☷↓ ☷ ▾ Q, Q, (P, (P) 🖓 🖾 🗖 🗸 🗸 🖄 🖾 💭 🔚 🔚 🔚 🔚 🗁 🖉 🖉 🖉 🖉 🖉 $\leftarrow \rightarrow$ 電磁波(周波数領域) 🔲 | 🖸 🔒 sphere.mph (root) ラベル: 電磁波(周波数領域) ▲ 🌐 グローバル定義 Pi パラメーター 名前: emw 1 材料 ドメイン選択 0 ▲ 1 コンポーネント 1 (comp1) ▶ ■ 定義 -1 選択: 全ドメイン 🔺 🖄 Sphere • 🕀 球 1 *(sph1)* η. ± 1 ON 🔲 1 (pml) 🔁 一体化モデルで完成 (fin) 1 1 2 (pml) -▷ 🚺 材料 1 8 アクティブ 3 (pml) ▲ 🚟 電磁波 (周波数領域) *(emw)* 4 (pml) ÷ 🄚 波動方程式 (電場) 1 5 ႃ 電気壁 (PEC) 1 6 2 初期値 1 0 📄 散乱境界条件 1 ▷ 方程式 ▷ ▲ メッシュ1 ▼ 設定 -1 ▲ ¹ 28 X9ディ1 🕅 ステップ 1: 周波数領域 計算対象: ▶ 📭 ソルバーコンフィギュレーション 散乱場 • ▶ 📠 結果 背呂波動タイプ: 1 у_†_х ユーザー定義 0 • 쾁몸雷場: 遠方場: バイスタティックレーダ断面積 (m²) 遠方場: バイスタティックレーダ断面積 (m²) exp(-j*emw.k0*z) х E_b 0 у V/m メッセージ 進捗 ログ Evaluation 3D 0 z (m²) 6 ▼ ポートスイープ設定 ダ断面積 COMSOL Multiphysics 5.2.1.229 ライセンスは11 日で失効します □ ポートスイープをアクティベート 開かれたファイル: sphere.mph フィジックス制御メッシュ 179 920 MB | 1079 MB 0.5 0.2 150

-150

-100

-50

0

φ角度 (deg)

50

100

No. 20

平面波励振の例:比較

共振器の解析(固有値問題)

励振問題と非励振問題

直方体空洞共振器の解析(TE^zモード; Ez=0) ^{No. 24}

変数分離法 (導波路モード解析の場合で d/dz=0としない)

$$\psi_h = X(x)Y(y)Z(z)$$
 $k = \omega\sqrt{\mu\varepsilon} = \frac{2\pi}{\lambda}$
 $\frac{1}{X}\frac{\partial^2 X}{\partial x^2} + \frac{1}{Y}\frac{\partial^2 Y}{\partial y^2} + \frac{1}{Z}\frac{\partial^2 Z}{\partial z^2} + k^2 = 0$
共振波数 $k^2 = k_x^2 + k_y^2 + k_z^2$
 $\frac{\partial^2 X}{\partial x^2} + k_e^2 X = 0, \frac{\partial^2 Y}{\partial y^2} + k_e^2 Y = 0, \frac{\partial^2 Z}{\partial z^2} + k_e^2 Z = 0$
 $\begin{cases} X = A\cos(k_x x) + B\sin(k_x x) \\ Y = C\cos(k_y y) + D\sin(k_y y) \\ Z = E\cos(k_z y) + F\sin(k_z y) \end{cases}$
境界条件から自由度を絞る
 c
 b
 f
Tokyo Institute of Technology
 f
Tokyo Institute of Technology
 f
Tokyo Institute of Technology
 T
Thirano

直方体空洞共振器の解析(TM^zモード; Hz=0) No. 25

変数分離法 (導波路モード解析の場合で d/dz=0としない)

$$\psi_e = X(x)Y(y)Z(z)$$
 $k = \omega\sqrt{\mu\varepsilon} = \frac{2\pi}{\lambda}$
 $\frac{1}{X}\frac{\partial^2 X}{\partial x^2} + \frac{1}{Y}\frac{\partial^2 Y}{\partial y^2} + \frac{1}{Z}\frac{\partial^2 Z}{\partial z^2} + k^2 = 0$
共振波数 $k^2 = k_x^2 + k_y^2 + k_z^2$
 $\frac{\partial^2 X}{\partial x^2} + k_c^2 X = 0, \frac{\partial^2 Y}{\partial y^2} + k_c^2 Y = 0, \frac{\partial^2 Z}{\partial z^2} + k_c^2 Z = 0$
 $\begin{cases} X = A\cos(k_x x) + B\sin(k_x x) \\ Y = C\cos(k_x y) + D\sin(k_y y) \\ Z = E\cos(k_z y) + F\sin(k_z y) \end{cases}$
境界条件から自由度を絞る c
 $k_x = \frac{m\pi}{a}, k_y = \frac{n\pi}{b}, k_z = \frac{p\pi}{c}$
 $k_c^2 = k_x^2 + k_y^2$
Tokyo Institute of Technology T this is the function of the provided in the

直方体空洞共振器

モデリング・設定

🔍 🗅 📂 🔒 🔍 🕨 ち さ 暗 🏛 🖷 🔍	🔝 🗟 📲 cuboid_cavity.mph - COMSOL	. Multiphysics (トライアルバージョン) ↔ —	o ×
ファイル▼ ホーム 定義 ジオメトリ 材料 フィジ	ックス メッシュ スタディ 結果		?
 モデルビルダ ・■ ← → ↑ ↓ ☞ ・ 雪† 雪↓ 雪 ・ ④ cuboid_cavity.mph (root) ④ グローバル定義 Pi パラメーター With NH ● コンポーネント 1 (comp 1) ▲ 38 スタディ1 ● スタディ1 ● スタディ1 ● スタディ1 ● スタディ1 ● スタディ1 ● 国有周波数 ● 「トーンリルパーコンフィギュレーション ▲ 結果 ● ゴーデークセット With デークセット With デークレート ● 国内(ロート) 	設定 特性 ▼ 固有周波数 = 計算 C 解更新 ●	 グラフィックス 収束プロット 1 ・① 東京 小 1 ・① 東京 小 1 ・○ 東京 ・○ 国 ・○ 東京 ・○ 東京 ・○ 東京 ・○ 東京 ・○ ・○ 東京 ・○ ・○	- I
	 ラベル: 固有周波数 スタディ設定 固有周波数探索方法: マニュアル ▼ 	0.02 0.1	400
	必要な固有周波数の数: 6 単位: Hz ▼ 次の周波数の近傍を検索: 1e9 Hz	z 0.05	250
	 フィジックスおよび変数選択 □ スタディステップに関するフィジックスツリーおよび変数を修正 	0.04	150 150 100
	プイジックスインターフェース 計算対象 離散化 電磁波 (周波数領域) (emw) マルジックス設定 マルチブイジックス 計算対象	y z o	0
	▷ 従属変数値	メッセージ 進捗 ログ テーブル	▼ # ×
	> メッシュ選択 > スタディ拡張	 COMSOL Multiphysics 5.2.1.229 ライセンスは7 日で気効します 開かれたファイル: cuboid_cavity.mph 求解の自由度数: 17294 計算時間(スタディ1): 5秒 	
	/ お勧め:「大きい実部」	求解の自由度数: 17294 計算時間 (スタディ1): 9 秒	

Tokyo Institute of Technology

🖲 🗅 📂 🔒 Ŗ 🕨 🐄 🕫 🛍 🗒	🕅 🗟 - I	cuboid_cavity.mph - COMSOL Multiphysics (トライアルバージョン)	↔ – ¤ ×
ファイル▼ ホーム 定義 ジオメトリ 材料 フィジ	ックス メッシュ スタディ 結果 電場 (emw)		?
モデルビルダ ← → ↑ ↓ ☞ 、 □1 □↓ □ 、 ▲ ③ cuboid_cavity.mph (root) ▲ ⑤ グローバル定義 Pi パラメーター い 材料 ▶ □ コンポーネント 1 (comp 1)	設定 特性 3D プロットグループ 3D プロット	 ▼■ グラフィックス 収束プロット 1 ④、 ○、 ・①、 ○、 ○、 ○、 ○、 ○、 ○、 ○、 ○、 ○、 ○、 ○、 ○、 ○、	
	ラベル: 電場 (emw) ▼ データ		02 0 0.1
 ▲ 30 スクティー ▲ ステップ 1: 固有周波数 ▶ 1, ソルバーコンフィギュレーション ▲ 編 結果 ▶ 2, データセット 2, 計算値 1, テーブル 	データセット: スタディ 1/解 1 (sol1) 固有周波数 (Hz): 2.9838E9 2.9838E9 2.9838E9 3.9553E9 ▼ プロット設定 5.1848E9		0.05 - 250
▲ ■ 電場 (emw) ・ 複数所面 ・ 描 エクスポート ■ レポート	ジュー: 自動 5.3652E9 5.3737E9 5.3737E9 非表示エンティ 5.7616E9 非表示を下位次元にも適用	Z	↓ 0 4 200 150 100
	▼ 1998/1998 カラー: 黒 座標系: 空間 (x, y, z)		0
	 カラーレジェンド表示 長大/最小値表示 位置: 右 テキスト色: 黒 数字フォーマット ウインドウ設定 	 ×ッセーシ 進捗 山ク アール COMSOL Multiphysics 5.2.1.229 ライセンスは7 日で失効します 開かれたファイル: cuboid_cavity.mph 求解の自由度数: 17294 計算時間(スタディ1): 5 秒 求解の自由度数: 17294 計算時間(スタディ1): 9 秒 	- ± ×
		967 MB 1136 MB	

電界分布

厳密解

f (GHz)							
р	1						
		n					
		0	1	2	3	4	
m	0	1.50	4 5.36	10.41	15.53	20.66	
	1	1 2.98	5.95	10.73	15.74	20.82	
	2	5 5.37	7.44	11.62	16.36	21.29	
	3	7.88	9.42	12.97	17.35	22.06	
	4	10.43	11.63	14.66	18.64	23.09	
							100 mm
n	2						
	_	n					
		0	1	2	3	4	
m	0	3.00	5.96	10.73	15.74	20.82	20.1 mm
	1	(2) 3.96	6.49	11.04	15.95	20.98	29.1 11111
	2	5.97	7.88	11.91	16.57	21.45	
	3	8.30	9.77	13.23	17.54	22.21	58.1 mm
	4	10.75	11.92	14.89	18.82	23.24	
n	3						
P	Ū	n					
		0	1	2	3	4	
m	0	4.50	6.84	11.24	16.09	21.09	
	1	3 5.18	7.31	11.53	16.30	21.25	
	2	6.84	8.57	12.37	16.90	21.71	
	3	8.95	10.33	13.65	17.86	22.47	
o Institute of	4	11.26	12.38	15.26	19.12	23.48	

T. Hirano

損失がある共振器/Q値

蓄積エネルギ- $Q = \omega_0 \frac{W}{-}$ 損失がない→Q=∞ 損失があるほどQは小さい 1秒当たりの消費エネルギー $Q = \left| \text{Re}[\omega_c] / (2 \,\text{Im}[\omega_c]) \right|$ $e(t) = \operatorname{Re}[E_0 e^{j\omega_c t}] = \operatorname{Re}[E_0 e^{j\operatorname{Re}[\omega_c]t}] e^{-\operatorname{Im}[\omega_c]t}$ $p(t) = p(0)e^{-2\operatorname{Im}[\omega_c]t}$

水野 皓司, "今更ながら, Qって何?", 電子情報通信学会誌, Vol.99, No.12, pp.1191-1192, Dec. 2016. T. Ohira, "What in the World Is Q?," in *IEEE Microwave Magazine*, vol. 17, no. 6, pp. 42-49, June 2016.

サーキュレーター ~異方性媒質の解析~

Tokyo Institute of Technology

磁化プラズマ(円偏波の場合)

右旋円偏波(+zに向かって), 正円偏波

$$H_y = -jH_x$$

 $\begin{cases} B_x = (\mu - \kappa)H_x = \mu_+H_x \\ B_y = (\mu - \kappa)H_y = \mu_+H_y \end{cases}$
 $\mu_+ = \mu_0 \left(1 + \frac{\omega_m}{\omega_0 - \omega}\right)$

左旋円偏波(+zに向かって), 負円偏波

$$H_{y} = jH_{x}$$

$$\begin{cases} B_{x} = (\mu + \kappa)H_{x} = \mu_{-}H_{x} \\ B_{y} = (\mu + \kappa)H_{y} = \mu_{-}H_{y} \end{cases} \qquad \mu_{-} = \mu_{0} \left(1 - \frac{\omega_{m}}{\omega_{0} - \omega}\right)$$

Tokyo Institute of Technology

4

No. 34

方形導波管の磁界

アプリケーションギャラリー

https://www.comsol.jp/models

RFモジュール

アプリケーションギャラリーで Filter by Discipline: Electrical -> RFモジュール と選択

https://www.comsol.jp/models/rf-module

おわり

ご清聴どうもありがとうございました。

電磁界解析

http://www.takuichi.net/em_analysis/

