スペクトル領域法による MoM リアクションの計算

2003/12/19 平野拓一 (東京工業大学)

目次

0. はじめに	2
1. 平面波	2
1.1 非自明解を持つ条件(kの大きさ)	2
1.2 横波条件(k)	3
1.3 磁界	3
2. 平面波スペクトル表現	3
3. MoM のリアクションの計算法	6
4. MoM のリアクションの計算法(別解)	7
5. スペクトル領域のグリーン関数 (Spatial 領域のグリーン関数のフーリエ変換)	8
5.1 グリーン関数の意味	9
5.2 グリーン関数のテンソル表現	10
5.3 スペクトル領域のグリーン関数の導出	11
$5.3.1~G_{*_x}$ の計算	11
6. フィールドが x 方向に周期的な場合	16
6.1 周期関数のフーリエ変換とは?	16
6.2 電磁界の問題に対応させる	17
References	19
A. 付録	20
A.1 S2DS	20
A.1.1 G_{*_x} の計算	20

0. はじめに

スペクトル領域法(Spectral Domain Approach, SDA または Spectral Domain Method) [1]は 横方向に無限に広がった層状の構造、例えばマイクロストリップ線路、パッチアンテナ(マイク ロストリップアンテナ)やガラス層を有するアンテナなどのモーメント法[2]解析のリアクション を計算するのに非常に有効な手法である。本稿では、スペクトル領域法の概念を説明し、具体例 として導波管スロットアンテナの外部の半無限自由空間の磁流の自己リアクションのスペクトル 領域法を用いた計算法について説明する。

1. 平面波

1.1 非自明解を持つ条件(<u>k</u>の大きさ) 電界または磁界はそれぞれ独立に次のヘルムホルツの方程式を満たす。

$$\nabla^2 \mathbf{E} + k_0^2 \mathbf{E} = 0 \qquad \text{(in free space)} \tag{1}$$

ここで、

 $\mathbf{E} = \mathbf{A} \exp(-j\mathbf{k} \cdot \mathbf{r}) \quad [V/m]$

と仮定して式(1)に代入して、界となる条件を求めてみる。ここで、A は場所の関数ではない定数 ベクトル、 $\mathbf{k} = \hat{x}k_x + \hat{y}k_y + \hat{z}k_z$ (波数ベクトル)、 $\mathbf{r} = \hat{x}x + \hat{y}y + \hat{z}z$ (位置ベクトル)である。上の式 が非自明な解($\mathbf{E} \neq 0$)になるためには次の条件を満たさなければならない(代入して簡単に確かめ られる)。

$$|{\bf k}| = k_0$$

 $k^{2} + k^{2} + k^{2} - k^{2}$

. .

$$k_{x} = \sqrt{k_{y}^{2} - k_{x}^{2} - k_{y}^{2}}$$

$$= \begin{cases} \sqrt{k_{0}^{2} - k_{x}^{2} - k_{y}^{2}} & (k_{0}^{2} > k_{x}^{2} + k_{y}^{2}, \text{visible region}) \\ -j\sqrt{k_{0}^{2} - k_{x}^{2} - k_{y}^{2}} & (k_{0}^{2} < k_{x}^{2} + k_{y}^{2}, \text{visible region}) \end{cases}$$
(3)

 $k_0^2 < k_x^2 + k_y^2$ のときに-*j*とする理由は物理的意味を考え、+z方向で増加せずに減衰するようにするためである(波源が-*z*方向にあると仮定した場合)。また、極座標の角度を用いて平面波の波数ベクトルを表すと次のようになる。

Tokyo Institute of Technology

(2)

$$\begin{cases} k_x = k_0 \sin \theta \cos \varphi \\ k_y = k_0 \sin \theta \sin \varphi \\ k_z = k_0 \cos \theta \end{cases}$$

$$\begin{cases} \theta = \cos^{-1} \frac{k_z}{k_0} = \operatorname{ArcCos}[\frac{k_z}{k_0}] \\ \varphi = \tan^{-1} \frac{k_y}{k_x} = \operatorname{ArcTan}[k_x, k_y] \end{cases}$$
 (ArcCos, ArcTan は Mathematica の記法)

このようにして、式(1)の解を式(2)のように大胆に仮定し、 $|\mathbf{k}| = k_0$ ならば式(1)の解になるという 結果を得た訳である。その他にも解は無いのだろうか?これは微分方程式論から、解の一意性が 保障されており、1つでも解が見つかれば他の解はあり得ないので、導き方に納得できないかも しれないが、式(2)+条件 $|\mathbf{k}| = k_0$ は確かに式(1)の唯一の解であることが保障されている。

<u>1.2 横波条件(k)</u> 自由空間(波源、電荷なし)を考えているので、 $\nabla \cdot \mathbf{E} = 0$ より $\mathbf{k} \cdot \mathbf{E} = 0$ $\mathbf{k} \cdot \mathbf{A} = 0$ を満たさなければならない。電界は進行方向成分を持たない。電界は横波である。

<u>1.3 磁界</u> アンペアの法則 $\nabla \times \mathbf{E} = -j\omega\mu_0 \mathbf{H}$ から平面波の磁界を計算すると、

$$\mathbf{H} = \frac{1}{\eta_0} \hat{k} \times \mathbf{E} \quad [A/m] \qquad (\eta_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \quad [\Omega])$$
となる。

1.1, 1.2, 1.3 より E, H, k は互いに直交している。電界も磁界も進行成分を持たない。よって電磁 波は横波である。

2. 平面波スペクトル表現

平面波 exp($-j\mathbf{k}\cdot\mathbf{r}$) (ここで、 $\mathbf{k} = \hat{x}k_x + \hat{y}k_y + \hat{z}k_z$, $\mathbf{r} = \hat{x}x + \hat{y}y + \hat{z}z$) はヘルムホルツの方程式

の解であるから、そのいろいろな方向に伝播する平面波の重ね合わせもまた解である。 また、完備性(Complete)から、いろいろな方向に伝搬する平面波の重ね合わせで任意の電磁界分 布を表現できる。これはある関数をテイラー展開したりフーリエ変換したりして、冪関数や三角 関数の和で表現できるのと同じである。ここでは、任意の電磁界分布を平面波の和に分解して電 磁界を解析する話をする。

平面波 exp(-jk·r)を重ね合わせた一般の表現は次のようになる。

$$\mathbf{E}(\mathbf{r}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{A}(\mathbf{k}) \exp(-j\mathbf{k} \cdot \mathbf{r}) dk_x dk_y$$
(4)

 $A(\mathbf{k})$ は平面波 exp($-j\mathbf{k}\cdot\mathbf{r}$)の重み係数であり、 $E(\mathbf{r})$ を平面波 exp($-j\mathbf{k}\cdot\mathbf{r}$)でスペクトル分解する。 k_z で重ね合わせをしない理由は、 k_z は式(3)から k_x, k_y に従属だから k_x, k_y によって決まり、独立 に積分できないからである。 また、自由空間を考えているので、1.2節の横波条件より $A(\mathbf{k})$ は次の関係を満たす。 $\mathbf{k}\cdot\mathbf{A}(\mathbf{k}) = 0$

 $k_x A_x(\mathbf{k}) + k_y A_y(\mathbf{k}) + k_z A_z(\mathbf{k}) = 0$

 A_x は A_x , A_y と独立でないと考えると、 A_x , A_y のみ考えればよい。

$$z = d \ \mathbb{C}^{\mathbb{C}} \mathbb{R} \mathbb{C}^{\mathbb{C}} \left\{ \mathbf{A}(k_x, k_y) \exp(-jk_z d) \right\} \exp(-jk_x x - jk_y y) dk_x dk_y$$
(5)

$$\mathbf{E}(x, y, d) \ \mathbf{L} \mathbf{A}(k_x, k_y) \exp(-jk_z z) \ \mathbf{O} \ 2 \ \mathcal{K} \overline{\mathbf{C}} \mathcal{T} - \mathbf{J} \ \mathbb{T} \mathbb{E}^{\mathbb{C}} \mathbb{E}^{\mathbb{C}} \mathbb{E}^{\mathbb{C}} \left\{ \mathbf{A}(k_x, k_y) \exp(-jk_z z) \ \mathbf{O} \ 2 \ \mathcal{K} \overline{\mathbf{C}} \mathcal{T} - \mathbf{J} \ \mathbb{T} \mathbb{E}^{\mathbb{C}} \mathbb{E}^{\mathbb{C}} \mathbb{E}^{\mathbb{C}} \mathbb{E}^{\mathbb{C}} \mathbb{E}^{\mathbb{C}} \left\{ \mathbf{A}(k_x, k_y) \ \mathbf{M} \ \mathbb{E}^{\mathbb{C}} \mathbb{E$$

特に、z=0で観測するときは

$$\mathbf{E}(x, y, 0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{A}(k_x, k_y) \exp(-jk_x x - jk_y y) dk_x dk_y$$

また、磁界は

$$\mathbf{H}(x, y, z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ \frac{1}{\eta_0} \hat{k} \times \mathbf{A}(k_x, k_y) \exp(-jk_z z) \right\} \exp(-jk_x x - jk_y y) dk_x dk_y$$

で表される。

図 1 平面波スペクトル分解のイメージ

図 1 に平面波スペクトル分解のイメージを示す。

遠方界は停留位相法[10](p. 922-926)を用いて次のように表すことができる[10](p. 625-629)。

$$\mathbf{E}^{\text{far}}(\mathbf{r}) = jk_z \mathbf{A}(k_x, k_y) \frac{e^{-jkr}}{r}$$
(7)

このように、任意の2次元分布をしている電界を平面波の和で表すというフーリエ変換の考え方 は電磁界の問題に限らず、現在いろいろな分野で使われている。例えば、最近デジタルカメラ(デ ジカメ)が普及したが画像を保存するとき、BMP(Bitmap)形式で保存すると自然画は非常に多く の色を含むのでファイルサイズが膨大となってしまう。そこで、自然画の保存に適した JPEG(Joint Photographic Experts Group)という画像フォーマットがよく使われている。JPEG では画像の色を値と見なして2次元フーリエ変換の問題に帰着させる。さらに画像は周期的に縦 横に無限に並んでいると仮定し、フーリエ級数の問題に直す。フーリエ級数はスペクトルが離散 になるため、コンピュータで扱いやすい。また、自然画はあまり急峻な変化をしないという性質

があるので、高次のフーリエ係数は小さな値となり、それらをカットして画像を復元しても人間 には変化がわかりにくい。JPEG こうしてフーリエ係数を保存して画像を圧縮しているのである。 この原理がわかれば、高次の係数は消されてしまっているので、完全に元の画像は復元できない。 したがって、非可逆圧縮である。

3. MoM のリアクションの計算法

(この章はわかりにくかったら読み飛ばして次の章から読んでも構わない) $Y_{ij}^{f} = \iint_{S} \mathbf{m}_{ai}(\mathbf{r}_{o}) \cdot \iint_{S} \overline{\mathbf{G}}^{f}(\mathbf{r}_{o};\mathbf{r}_{s}) \cdot \mathbf{m}_{bj}(\mathbf{r}_{s}) dS_{s} dS_{o}$ $= \int_{x_{o}=-l/2}^{l/2} \int_{y_{o}=-w/2}^{w/2} \mathbf{m}_{ai}(\mathbf{r}_{o}) \cdot \int_{x_{s}=-l/2}^{l/2} \int_{y_{s}=-w/2}^{w/2} \overline{\mathbf{G}}^{f}(\mathbf{r}_{o};\mathbf{r}_{s}) \cdot \mathbf{m}_{bj}(\mathbf{r}_{s}) dS_{s} dS_{o}$ $= \int_{x_{o}=-\infty}^{\infty} \int_{y_{o}=-\infty}^{\infty} \mathbf{m}_{ai}(\mathbf{r}_{o}) \cdot \int_{x_{s}=-\infty}^{\infty} \int_{y_{s}=-\infty}^{\infty} \overline{\mathbf{G}}^{f}(\mathbf{r}_{o};\mathbf{r}_{s}) \cdot \mathbf{m}_{bj}(\mathbf{r}_{s}) dS_{s} dS_{o}$ ここで、

$$\overline{\mathbf{G}}^{f}(\mathbf{r}_{o};\mathbf{r}_{s}) = \overline{\mathbf{G}}^{f}(x_{o}-x_{s},y_{o}-y_{s},z_{o}-z_{s}) = -\frac{j\omega\varepsilon_{0}}{2\pi} \left(\overline{\mathbf{I}} + \frac{1}{k_{0}^{2}}\nabla_{o}\nabla_{o}\right) \frac{\exp(-jk_{0}|\mathbf{r}_{o}-\mathbf{r}_{s}|)}{|\mathbf{r}_{o}-\mathbf{r}_{s}|}$$
(8)

半無限自由空間のグリーン関数はイメージ理論により自由空間のときの2倍になっている。

$$\widetilde{\mathbf{G}}^{f}(k_{x},k_{y},z_{o}-z_{s}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \overline{\mathbf{G}}^{f}(\mathbf{r}_{o};\mathbf{r}_{s}) e^{jk_{x}(x_{o}-x_{s})} e^{jk_{y}(y_{o}-y_{s})} d(x_{o}-x_{s}) d(y_{o}-y_{s})$$
(9)

微小ダイポール波源が放射するフィールドを平面波スペクトル分解したときの波数 (k_x,k_y) 成分という意味を持つ。

「ダイアドのフーリエ変換とは何だ?」と思うかもしれないが、ダイアドは行列表現することが できる。そして、行列のフーリエ変換というのは、各要素(スカラー)をフーリエ変換している ものである。このことはm, $\overline{\mathbf{G}}^{f}$ を成分ごとに分けて考えてみるとわかる。 $\overline{\mathbf{G}}^{f}(x_{a}-x_{s},y_{a}-y_{s},z_{a}-z_{s})$

$$=\frac{1}{(2\pi)^{2}}\int_{k_{x}=-\infty}^{\infty}\int_{k_{y}=-\infty}^{\infty}\widetilde{\mathbf{G}}^{f}(k_{x},k_{y},z_{o}-z_{s})e^{-jk_{x}(x_{o}-x_{s})}e^{-jk_{y}(y_{o}-y_{s})}dk_{x}dk_{y}$$

微小ダイポールが放射するフィールドを波数(k_x,k_y)の平面波の重ね合わせで表現。

 $\widetilde{\mathbf{G}}^{f}(k_{x},k_{y},z_{o}-z_{s})$ は平面波の重み(?)

$$\begin{split} Y_{ij}^{f} &= \int_{x_{o}=-\infty}^{\infty} \int_{y_{o}=-\infty}^{\infty} \mathbf{m}_{ai}(\mathbf{r}_{o}) \cdot \\ &\int_{x_{s}=-\infty}^{\infty} \int_{y_{s}=-\infty}^{\infty} \frac{1}{(2\pi)^{2}} \int_{k_{x}=-\infty}^{\infty} \int_{k_{y}=-\infty}^{\infty} \widetilde{\mathbf{G}}^{f}(k_{x},k_{y},z_{o}-z_{s}) e^{-jk_{x}(x_{o}-x_{s})} e^{-jk_{y}(y_{o}-y_{s})} dk_{x} dk_{y} \cdot \mathbf{m}_{bj}(\mathbf{r}_{s}) dS_{s} dS_{o} \\ &= \frac{1}{(2\pi)^{2}} \int_{k_{x}=-\infty}^{\infty} \int_{k_{y}=-\infty}^{\infty} \left[\int_{x_{o}=-\infty}^{\infty} \int_{y_{o}=-\infty}^{\infty} \mathbf{m}_{ai}(\mathbf{r}_{o}) e^{-jk_{x}x_{o}} e^{-jk_{y}y_{o}} dS_{o} \right] \cdot \widetilde{\mathbf{G}}^{f}(k_{x},k_{y},z_{o}-z_{s}) \cdot \\ &\left[\int_{x_{s}=-\infty}^{\infty} \int_{y_{s}=-\infty}^{\infty} \mathbf{m}_{bj}(\mathbf{r}_{s}) e^{+jk_{x}x_{s}} e^{+jk_{y}y_{s}} dS_{s} \right] dk_{x} dk_{y} \\ &= \frac{1}{(2\pi)^{2}} \int_{k_{x}=-\infty}^{\infty} \int_{k_{y}=-\infty}^{\infty} \widetilde{\mathbf{m}}_{ai}(-k_{x},-k_{y}) \cdot \widetilde{\mathbf{G}}^{f}(k_{x},k_{y},z_{o}-z_{s}) \cdot \widetilde{\mathbf{m}}_{bj}(k_{x},k_{y}) dk_{x} dk_{y} \end{split}$$

$$ΞΞC,$$

$$\widetilde{\mathbf{m}}(k_x,k_y) = \mathsf{F}[\mathbf{m}] = \int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} \mathbf{m}(\mathbf{r}) e^{+jk_x x} e^{+jk_y y} dx dy$$

$$\mathbf{m}(x,y) = \mathsf{F}^{-1}[\widetilde{\mathbf{m}}] = \frac{1}{(2\pi)^2} \int_{k_x = -\infty}^{\infty} \int_{k_y = -\infty}^{\infty} \widetilde{\mathbf{m}}(k_x,k_y) e^{-jk_x x} e^{-jk_y y} dk_x dk_y$$
(11)

であり、次のフーリエ変換対となっている。

さて、ここで $ilde{\mathbf{G}}^f$ がどのような表現になるのか気になるかもしれないが、それについては 5 章で説明する。

<u>4. MoM のリアクションの計算法(別解)</u>

3 章の考え方はトップダウン的(天下り的)な説明でわかりにくかったかもしれない。この章で はボトムアップ的な説明をし、その意味を掴んでもらいたい。

$$Y_{ij}^{f} = \iint_{S_{a}} \mathbf{m}_{ai}(\mathbf{r}_{o}) \cdot \iint_{S_{b}} \overline{\mathbf{G}}^{f}(\mathbf{r}_{o};\mathbf{r}_{s}) \cdot \mathbf{m}_{bj}(\mathbf{r}_{s}) dS_{s} dS_{o}$$
$$= \iint_{S_{a}} \mathbf{m}_{ai}(\mathbf{r}_{o}) \cdot \mathbf{H}_{bj}(\mathbf{r}_{o}) dS_{o}$$
$$= \int_{x_{o}=-\infty}^{\infty} \int_{y_{o}=-\infty}^{\infty} \mathbf{m}_{ai}(\mathbf{r}_{o}) \cdot \mathbf{H}_{bj}(\mathbf{r}_{o}) dx_{o} dy_{o}$$
$$= \int_{x_{o}=-\infty}^{\infty} \int_{y_{o}=-\infty}^{\infty} \left\{ \mathbf{m}_{ai}(\mathbf{r}_{o}) \right\}^{*} \cdot \mathbf{H}_{bj}(\mathbf{r}_{o}) dx_{o} dy_{o}$$

(複素共役*は**m**_{ai}が実数だからあっても無くても同じだが、これからの式変形でより変形しやすいから形式的に*を取っておく)

アイデアとしてはこの放射されるフィールド $\mathbf{H}_{bj}(\mathbf{r}_{o})$ と磁界流 $\mathbf{m}_{ai}(\mathbf{r}_{o})$ を平面波スペクトルで書 き表す。ここでは、スロット磁流 $\mathbf{m}_{ai}(\mathbf{r}_{o})$ 上の磁界 $\mathbf{H}_{bj}(\mathbf{r}_{o})$ を2章で説明した平面波スペクトルで

(10)

$$= \frac{1}{(2\pi)^2} \int_{k_x = -\infty}^{\infty} \int_{k_y = -\infty}^{\infty} \widetilde{\mathbf{H}}_{bj}(k_x, k_y) \cdot \left\{ \widetilde{\mathbf{m}}_{ai}(k_x, k_y) \right\}^* dk_x dk_y$$

$$= \frac{1}{(2\pi)^2} \int_{k_x = -\infty}^{\infty} \int_{k_y = -\infty}^{\infty} \left\{ \widetilde{\mathbf{m}}_{ai}(k_x, k_y) \right\}^* \cdot \widetilde{\mathbf{H}}_{bj}(k_x, k_y) dk_x dk_y$$

$$= \frac{1}{(2\pi)^2} \int_{k_x = -\infty}^{\infty} \int_{k_y = -\infty}^{\infty} \widetilde{\mathbf{m}}_{ai}(-k_x, -k_y) \cdot \widetilde{\mathbf{H}}_{bj}(k_x, k_y) dk_x dk_y$$

実は、上の式変形はフーリエ変換の公式として有名なパーセバルの等式(ヒルベルト空間において、ピタゴラスの定理の無限次元バージョンと考えればよい)になっている。

ここで、

$$\mathbf{H}_{bj}(\mathbf{r}_{o}) = \iint_{S_{b}} \overline{\mathbf{G}}^{f}(\mathbf{r}_{o};\mathbf{r}_{s}) \cdot \mathbf{m}_{bj}(\mathbf{r}_{s}) dS_{s}$$

$$= \int_{x_{s}=-\infty}^{\infty} \int_{y_{s}=-\infty}^{\infty} \overline{\mathbf{G}}^{f}(x_{o} - x_{s}, y_{o} - y_{s}, z_{o} - z_{s}) \cdot \mathbf{m}_{bj}(x_{s}, y_{s}) dx_{s} dy_{s}$$
最後の表現に注目して欲しい。これは豊み込み(Convolution)の表現に

最後の表現に注目して欲しい。これは**畳み込み(Convolution)**の表現になっている。従って、その フーリエ変換は各関数のフーリエ変換同士の積になる。

$$\widetilde{\mathbf{H}}_{bj}(\mathbf{r}_{o}) = \widetilde{\mathbf{G}}^{f}(k_{x},k_{y},z_{o}-z_{s})\cdot\widetilde{\mathbf{m}}_{bj}(k_{x},k_{y})$$

従って、

$$Y_{ij}^{f} = \frac{1}{(2\pi)^{2}} \int_{k_{x}=-\infty}^{\infty} \tilde{\mathbf{m}}_{ai}(-k_{x},-k_{y}) \cdot \tilde{\mathbf{G}}^{f}(k_{x},k_{y},z_{o}-z_{s}) \cdot \tilde{\mathbf{m}}_{bj}(k_{x},k_{y}) dk_{x} dk_{y}$$
3 章と同じ表現が得られた。

5. スペクトル領域のグリーン関数 (Spatial 領域のグリーン関数のフーリエ変換) $\tilde{\mathbf{m}}$ は式(10)から \mathbf{m} が与えられれば計算できることがわかる。 $\tilde{\mathbf{G}}^f$ も式(8)を式(9)に代入して計算す れば計算できるのだが、式(8)を見るとベクトル微分演算子や e^{-jk_0r}/r という複雑な関数を含み、

それを積分しなければならないと思うと気が遠くなってきてやる気がしない。そこで、もう少し 戻って基礎から考え直してみよう。その方が実は簡単なのである。

5.1 グリーン関数の意味

まず、グリーン関数 $\overline{\mathbf{G}}^{f}$ とは物理的には一体どのようなものなのか考えてみる。

 $\mathbf{H}(\mathbf{r}_o) = \iint_{s} \overline{\mathbf{G}}^{f}(\mathbf{r}_o;\mathbf{r}_s) \cdot \mathbf{M}(\mathbf{r}_s) dS_s$

(12)

というように、磁流から磁界を求めるのに使われる。

さて、ここで \hat{a} 方向(大きさが1の定数ベクトル)を向いた磁流微小ダイポールが \mathbf{r}_a に置かれているとしよう。

 $\mathbf{M}(\mathbf{r}_s) = \hat{a}\delta(\mathbf{r}_s - \mathbf{r}_a)$

そのとき、上の磁流が作る磁界は

$$\mathbf{H}(\mathbf{r}_{o}) = \iint_{S} \overline{\mathbf{G}}^{f}(\mathbf{r}_{o};\mathbf{r}_{s}) \cdot \{\hat{a}\delta(\mathbf{r}_{s}-\mathbf{r}_{a})\} dS_{s}$$
$$= \hat{a} \cdot \overline{\mathbf{G}}^{f}(\mathbf{r}_{o};\mathbf{r}_{a})$$

つまり、グリーン関数 $\overline{\mathbf{G}}^f$ と \hat{a} の内積が \hat{a} 方向を向いた微小ダイポールの磁界を表すことになり、 グリーン関数 $\overline{\mathbf{G}}^f$ は微小ダイポールが作るフィールドであると言ってしまってもよい(厳密には 微小ダイポールの向き \hat{a} にも依存し、内積を取らなければならないが)。余談になるが、他の分野

との関わりを見てみると、制御工学の理論では $\overline{\mathbf{G}}^f(\mathbf{r}_o;\mathbf{r}_a)$ はインパルス応答と見なすこともできる。

0

さて、

 $\mathbf{M}(\mathbf{r}_s) = \iint_{S} \mathbf{M}(\mathbf{r}) \delta(\mathbf{r} - \mathbf{r}_s) dS$

と δ 関数との畳み込みで表現することもできる(畳み込みの定義を覚えていなくても、右辺を計 算すると、 δ 関数の性質から確かに左辺に一致することが確認できる)。上の式の右辺について考 察すると、 $M(\mathbf{r}_s)$ というのは \mathbf{r}_s の位置で $M(\mathbf{r}_s)$ の向きと大きさを持つ微小ダイポールの重ね合わ せと見なせる表現になっている。つまり、 $M(\mathbf{r}_s)$ は微小ダイポールの重ね合わせと見なして構わ ない。すると式(12)微小ダイポールが放射するフィールドを重ね合わせているという見方もでき る。再び、制御工学と関連した話をすると、インパルス応答がわかればどのような入力に対する 応答もわかるという定理がある。これと同じことで、微小ダイポールが放射するフィールドがわ かればどのような波源が放射するフィールドもわかるのである。式(12)はそのことを物語ってい る。そもそもグリーン(George Green, 1793-1841, イギリス)が考え出したグリーン関数というの はそのようなことに使う概念であり「ある特殊な場合の解が求められれば、その知識だけで一般 の場合も解ける」方法を説明しているのである。また余談だが、グリーンはイギリスの工業都市 Nottingham で生まれ育ち、父親のパン屋・粉屋の後を継いで粉引きのおじさんだったのだが、 独学で数学を勉強し、一人で歴史に残る偉大な論文[5]([6][7][8]にも載っているらしい)を書き上 げた。その論文[5]は自費出版に近いものだったようである。しかし、グリーンが生きている間は その偉大な業績はあまりに時代に先んじていたために評価されることはなかったようである[9]。 それ故、ベクトル解析のガウスの定理の名前になっているガウスは有名だが、グリーンは「グリ ーンの定理」の名こそ有名だが偉大な業績に反して知名度は低い。改めてグリーンの偉大な業績 と努力に感謝したい。

5.2 グリーン関数のテンソル表現

テンソル(ベクトルのようなもの)表現に書き換えてみると、

$$\mathbf{H}(\mathbf{r}_{o}) = \iint_{S} \begin{bmatrix} G_{xx} & G_{xy} & G_{xz} \\ G_{yx} & G_{yy} & G_{yz} \\ G_{zx} & G_{zy} & G_{zz} \end{bmatrix} \begin{bmatrix} M_{x} \\ M_{y} \\ M_{z} \end{bmatrix} dS_{s}$$
(13)

$$\begin{bmatrix} H_{x} \\ H_{y} \\ H_{z} \end{bmatrix} = \begin{bmatrix} \iint_{S} \left\{ G_{xx} M_{x} + G_{xy} M_{y} + G_{xz} M_{z} \right\} dS_{s} \\ \iint_{S} \left\{ G_{yx} M_{x} + G_{yy} M_{y} + G_{yz} M_{z} \right\} dS_{s} \\ \iint_{S} \left\{ G_{zx} M_{x} + G_{zy} M_{y} + G_{zz} M_{z} \right\} dS_{s} \end{bmatrix}$$
(14)

となる(3×3の行列と3×1の行列[ベクトル]を掛けて、演算結果は3×1の行列、つまり3次元 ベクトルになっている!)。言わば、式(12)のダイアディックの表現は抽象的な「演算子」を表す 一般的な概念の記述法だった。しかし、式(13)のようにテンソル表現で具体的に書き表しても一 般性を失わない。

+ x 向きに置かれた微小磁流ダイポールが作る磁界とグリーン関数(テンソル要素)の関係 微小磁流ダイポールが $\mathbf{r}'_s = \hat{x}x'_s + \hat{y}y'_s + \hat{z}z'_s$ に置かれているとする。 $\mathbf{M} = \hat{x}\delta(x - x'_s)\delta(y - y'_s)\delta(z - z'_s)$ つまり、 $M_x = \delta(x - x'_s)\delta(y - y'_s)\delta(z - z'_s), M_y = 0, M_z = 0$

であるから、式(14)より、

$$\begin{bmatrix} H_x \\ H_y \\ H_z \end{bmatrix} = \begin{bmatrix} \iint_S \{ G_{xx} \delta(x - x'_s) \delta(y - y'_s) \delta(z - z'_s) + G_{xy} \cdot 0 + G_{xz} \cdot 0 \} dS_s \\ \iint_S \{ G_{yx} \delta(x - x'_s) \delta(y - y'_s) \delta(z - z'_s) + G_{yy} \cdot 0 + G_{yz} \cdot 0 \} dS_s \end{bmatrix} = \begin{bmatrix} G_{xx}(\mathbf{r}_o, \mathbf{r}'_s) \\ G_{yx}(\mathbf{r}_o, \mathbf{r}'_s) \\ G_{zx}(\mathbf{r}_o, \mathbf{r}'_s) \end{bmatrix}$$

となる。

同様にして、

+ y 向きに置かれた微小磁流ダイポールが作る磁界とグリーン関数 (テンソル要素)の関係

$$\begin{bmatrix} H_{x} \\ H_{y} \\ H_{z} \end{bmatrix} = \begin{bmatrix} G_{xy}(\mathbf{r}_{o}, \mathbf{r}'_{s}) \\ G_{yy}(\mathbf{r}_{o}, \mathbf{r}'_{s}) \\ G_{zy}(\mathbf{r}_{o}, \mathbf{r}'_{s}) \end{bmatrix}$$

+ z 向きに置かれた微小磁流ダイポールが作る磁界とグリーン関数 (テンソル要素)の関係

 $\begin{bmatrix} H_{x} \\ H_{y} \\ H_{z} \end{bmatrix} = \begin{bmatrix} G_{xz}(\mathbf{r}_{o}, \mathbf{r}'_{s}) \\ G_{yz}(\mathbf{r}_{o}, \mathbf{r}'_{s}) \\ G_{zz}(\mathbf{r}_{o}, \mathbf{r}'_{s}) \end{bmatrix}$

5.3 スペクトル領域のグリーン関数の導出

さて、5.1 節の考察から式(8)のグリーン関数 $\overline{\mathbf{G}}^{f}$ は微小ダイポールの向き \hat{a} との内積を取る $(\hat{a} \cdot \overline{\mathbf{G}}^{f})$ と微小ダイポールが作る磁界そのものであることがわかった。つまり、 $\overline{\mathbf{G}}^{f}$ は電気形ベク トルポテンシャル[10](pp.117-121)

$$\mathbf{F}(\mathbf{r}_{o};\mathbf{r}_{s}) = \iint_{S} \frac{\varepsilon_{0} \mathbf{M}(\mathbf{r}_{s}) \exp(-jk_{0} |\mathbf{r}_{o} - \mathbf{r}_{s}|)}{2\pi |\mathbf{r}_{o} - \mathbf{r}_{s}|} dS_{s}$$
(15)

を用いて(今、半無限自由空間を考えているから自由空間の2倍にしている)計算される磁界

$$\mathbf{H} = -j\omega\mathbf{F} - j\frac{1}{\omega\mu_0\varepsilon_0}\nabla(\nabla\cdot\mathbf{F}) = -j\omega\left[\mathbf{F} + \frac{1}{k_0^2}\nabla(\nabla\cdot\mathbf{F})\right]$$

と関係している。

さて、スペクトル領域のグリーン関数を求めるときに知りたかったのはGのフーリエ変換である。 また、5.2節で特殊な波源(微小ダイポール)を考えたらGとHは一致することを示したので、H のフーリエ変換を計算しておく。

$$\mathbf{H} = -j\boldsymbol{\omega} \left[\mathbf{F} + \frac{1}{k_0^2} \left(\hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} \right) \left\{ \left(\hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} \right) \cdot \mathbf{F} \right\} \right]$$

である。両辺をx,yに関してフーリエ変換すると(1方向のみのフーリエ変換はA.1参照)

$$\widetilde{\mathbf{H}} = -j\omega \left[\widetilde{\mathbf{F}} + \frac{1}{k_0^2} \left(-jk_x \hat{x} - jk_y \hat{y} + \hat{z} \frac{\partial}{\partial z} \right) \left\{ \left(-jk_x \hat{x} - jk_y \hat{y} + \hat{z} \frac{\partial}{\partial z} \right) \cdot \widetilde{\mathbf{F}} \right\} \right]$$
(16)

<u>5.3.1 *G*_{*x}の計算</u>

今、*x*方向を向いた微小ダイポールが (x_s, y_s, z_s) に置かれているとする。つまり、 $\mathbf{M}(\mathbf{r}_o) = \hat{x}\delta(\mathbf{r}_o - \mathbf{r}_s) = \hat{x}\delta(x_o - x_s)\delta(y_o - y_s)\delta(z_o - z_s)$

とする。この \mathbf{M} が放射する磁界は 5.2 節から G_{xx} そのものとなる。

さて、これからこの M が放射する磁界を求めよう。まず、 F を求めてから H を求めるのが楽で ある。 F を求めるには式(15)を用いても良いのだが、別の求め方もある。 F は一般に次のヘルム ホルツの波動方程式を満たす。

$$\nabla^2 \mathbf{F} + k_0^2 \mathbf{F} = -\varepsilon_0 \mathbf{M} \tag{17}$$

ここで、 ∇^2 はベクトルラプラシアンであり、 $\nabla^2 \mathbf{A} = -\nabla \times (\nabla \times \mathbf{A}) + \nabla (\nabla \cdot \mathbf{A})$ で定義される。カ ルテシアン座標では $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ となる。

今の場合を式(17)に当てはめて下が満たすべき方程式を求めると、

$$\left(\frac{\partial^2}{\partial x_o^2} + \frac{\partial^2}{\partial y_o^2} + \frac{\partial^2}{\partial z_o^2}\right) \mathbf{F} + k_0^2 \mathbf{F} = -\varepsilon_0 \left\{ \hat{x} \delta(x_o - x_s) \delta(y_o - y_s) \delta(z_o - z_s) \right\}$$
(18)

となる。この式を解いてFを求めても式(15)を用いて求めるのと全く同じ結果となる。しかし、 式(15)でFを求めるのは簡単なので、この表現で求める意味がない。しかし、スペクトル領域の 表現FFを求めるにはこの微分方程式を解く方が楽であり、威力を発揮する。式(18)の両辺をフー リエ変換しよう。4 章最後の議論により、両辺を $x_o - x_s$, $y_o - y_s$ でフーリエ変換することに注意 する。

$$\frac{\partial}{\partial x_o} = \frac{\partial}{\partial (x_o - x_s)} \frac{\partial (x_o - x_s)}{\partial x_o} = \frac{\partial}{\partial (x_o - x_s)} \cdot 1 = \frac{\partial}{\partial (x_o - x_s)}$$
$$\frac{\partial}{\partial y_o} = \frac{\partial}{\partial (y_o - y_s)} \frac{\partial (y_o - y_s)}{\partial y_o} = \frac{\partial}{\partial (y_o - y_s)} \cdot 1 = \frac{\partial}{\partial (y_o - y_s)}$$
$$c = \frac{\partial}{\partial (y_o - y_s)} \cdot 1 = \frac{\partial}{\partial (y_o - y_s)}$$

$$\left(-k_{x}^{2}-k_{y}^{2}+\frac{\partial^{2}}{\partial z_{o}^{2}}\right)\widetilde{\mathbf{F}}+k_{0}^{2}\widetilde{\mathbf{F}}=-\hat{x}\varepsilon_{0}\delta(z_{o}-z_{s})$$

$$\frac{\partial^2}{\partial z_o^2} \widetilde{\mathbf{F}} + \left(k_0^2 - k_x^2 - k_y^2\right) \widetilde{\mathbf{F}} = -\hat{x} \varepsilon_0 \delta(z_o - z_s)$$
$$\frac{\partial^2}{\partial z^2} \widetilde{\mathbf{F}} - \gamma^2 \widetilde{\mathbf{F}} = -\hat{x} \varepsilon_0 \delta(z - z_s) \qquad (\gamma^2 = k_x^2 + k_y^2 - k_0^2)$$

成分ごとに書くと、

$$\begin{cases} \frac{\partial^2}{\partial z^2} \widetilde{F}_x - \gamma^2 \widetilde{F}_x = -\varepsilon_0 \delta(z - z_s) \\ \frac{\partial^2}{\partial z^2} \widetilde{F}_y - \gamma^2 \widetilde{F}_y = 0 \\ \frac{\partial^2}{\partial z^2} \widetilde{F}_z - \gamma^2 \widetilde{F}_z = 0 \end{cases}$$

これはこに関する定数係数微分方程式であり、解くのは簡単である。

\widetilde{F}_x の方程式に関して:

まず斉次方程式を解く(z=z,以外の場所で成り立っている)。

 $\widetilde{F}_x = Ae^{\varkappa} + Be^{-\varkappa}$

物理的意味を考え、波源は $z = z_s$ にしかないから $z < z_s$ では-z方向に進む波、 $z \ge z_s$ では+z方向に進む波しか存在しない(波動関数の性質を考えて)。

 $\widetilde{F}_{x} = \begin{cases} Ae^{\varkappa} & (z < z_{s}) \\ Be^{-\varkappa} & (z \ge z_{s}) \end{cases}$

次に、 \widetilde{F}_x は $_z = z_s$ で連続にならなければならないので(**H**が波源の無い場所で連続になる必要があるから)、

$$\lim_{z \to z_s^-} \tilde{F}_x = \lim_{z \to z_s^+} \tilde{F}_x$$

$$Ae^{\kappa_s} = Be^{-\kappa_s}$$

$$A = Be^{-2\kappa_s}$$

$$\sharp \supset \tau_s$$

$$\tilde{F}_x = \begin{cases} Be^{-2\kappa_s}e^{\kappa} & (z < z_s) \\ Be^{-\kappa} & (z \ge z_s) \end{cases}$$

次に、ヘルムホルツの波動方程式の両辺を $z = z_s - \Delta z \rightarrow z_s + \Delta z$ で積分する。これは Δz が小さく ても成り立たなければならないので、

$$\lim_{\Delta z \to 0} \int_{z=z_s - \Delta z}^{z_s + \Delta z} \left[\frac{\partial^2}{\partial z^2} \widetilde{F}_x - \gamma^2 \widetilde{F}_x \right] dz = -\varepsilon_0 \lim_{\Delta z \to 0} \int_{z=z_s - \Delta z}^{z_s + \Delta z} \delta(z-z_s) dz$$

$$\lim_{\Delta z \to 0} \left[\frac{\partial \widetilde{F}_x}{\partial z} \right]_{z=z_s - \Delta z}^{z_s + \Delta z} + \lim_{\Delta z \to 0} \int_{z=z_s - \Delta z}^{z_s + \Delta z} \widetilde{F}_x dz = -\varepsilon_0$$

左辺 2 項目は \tilde{F}_x の $z = z_s$ での連続性から 0 になる。

$$\begin{aligned} \frac{\partial \widetilde{F}_{x}}{\partial z} \bigg|_{z=z_{s}^{+}} &- \frac{\partial \widetilde{F}_{x}}{\partial z} \bigg|_{z=z_{s}^{-}} = -\varepsilon_{0} \\ &- \gamma B e^{-\varkappa} \bigg|_{z=z_{s}} - \gamma B e^{-2\varkappa_{s}} e^{\varkappa} \bigg|_{z=z_{s}} = -\varepsilon_{0} \\ &- \gamma B e^{-\varkappa_{s}} - \gamma B e^{-\varkappa_{s}} = -\varepsilon_{0} \\ &- 2\gamma B e^{-\varkappa_{s}} - \gamma B e^{-\varkappa_{s}} = -\varepsilon_{0} \\ B &= \frac{\varepsilon_{0} e^{\varkappa_{s}}}{2\gamma} \\ \widetilde{F}_{x} &= \begin{cases} \frac{\varepsilon_{0} e^{-\varkappa_{s}}}{2\gamma} e^{\varkappa} & (z < z_{s}) \\ \frac{\varepsilon_{0} e^{\varkappa_{s}}}{2\gamma} e^{-\varkappa} & (z \ge z_{s}) \end{cases} \\ \widetilde{F}_{x} &= \begin{cases} \frac{\varepsilon_{0} \exp\{\gamma(z - z_{s})\}}{2\gamma} & (z < z_{s}) \\ \frac{\varepsilon_{0} \exp\{\gamma(z - z_{s})\}}{2\gamma} e^{-\varkappa} & (z \ge z_{s}) \end{cases} \end{cases} \\ \varepsilon_{0} \exp\{-\gamma(z - z_{s})\} e^{-\varkappa} & (z \ge z_{s}) \end{cases} \end{aligned}$$

$$\widetilde{F}_{x} = \frac{\varepsilon_{0} \exp(-\gamma |z - z_{s}|)}{2\gamma}$$

$$\widetilde{F}_{y}, \ \widetilde{F}_{z}$$
の方程式に関して:

 \tilde{F}_x の導出と同じであり、計算過程を見ると、右辺が0なので結局

)

$$\widetilde{F}_{y} = \widetilde{F}_{z} = 0$$

となることがわかる。

式(16)より、今の場合は

$$\begin{split} \widetilde{\mathbf{H}} &= -j\omega \Biggl[\hat{x}\widetilde{F}_{x} + \frac{1}{k_{0}^{2}} \Biggl(-jk_{x}\hat{x} - jk_{y}\hat{y} + \hat{z}\frac{\partial}{\partial z} \Biggr) \Biggl\{ \Biggl(-jk_{x}\hat{x} - jk_{y}\hat{y} + \hat{z}\frac{\partial}{\partial z} \Biggr) \cdot (\hat{x}\widetilde{F}_{x}) \Biggr\} \Biggr] \\ &= -j\omega \Biggl[\hat{x}\widetilde{F}_{x} + \frac{1}{k_{0}^{2}} \Biggl(-jk_{x}\hat{x} - jk_{y}\hat{y} + \hat{z}\frac{\partial}{\partial z} \Biggr) (-jk_{x}\widetilde{F}_{x}) \Biggr] \\ &= -j\omega \Biggl[\hat{x}\widetilde{F}_{x} + \frac{1}{k_{0}^{2}} \Biggl(-k_{x}^{2}\widetilde{F}_{x}\hat{x} - k_{x}k_{y}\widetilde{F}_{x}\hat{y} - jk_{x}\frac{\partial\widetilde{F}_{x}}{\partial z} \hat{z} \Biggr) \Biggr] \\ &= -j\omega \Biggl[\hat{x}\Biggl[x\Biggl[1 - \frac{k_{x}^{2}}{k_{0}^{2}} \Biggr] \widetilde{F}_{x} - \hat{y}\frac{k_{x}k_{y}}{k_{0}^{2}} \widetilde{F}_{x} - \hat{z}j\frac{k_{x}}{k_{0}^{2}}\frac{\partial\widetilde{F}_{x}}{\partial z} \Biggr] \\ &= -j\omega \Biggl[\hat{x}\frac{k_{0}^{2} - k_{x}^{2}}{k_{0}^{2}} \widetilde{F}_{x} - \hat{y}\frac{k_{x}k_{y}}{k_{0}^{2}} \widetilde{F}_{x} - \hat{z}j\frac{k_{x}}{k_{0}^{2}}\frac{\partial\widetilde{F}_{x}}{\partial z} \Biggr] \end{split}$$

よって 5.2 節の関係より、

$$\widetilde{G}_{xx} = -j\omega \frac{k_0^2 - k_x^2}{k_0^2} \widetilde{F}_x = -\frac{j\omega\varepsilon_0}{2\gamma} \frac{k_0^2 - k_x^2}{k_0^2} \exp(-\gamma |z - z_s|) = -\frac{jk_0}{2\eta_0 \gamma} \frac{k_0^2 - k_x^2}{k_0^2} \exp(-\gamma |z - z_s|)$$

$$\widetilde{G}_{yx} = j\omega \frac{k_x k_y}{k_0^2} \widetilde{F}_x = \frac{j\omega \varepsilon_0}{2\gamma} \frac{k_x k_y}{k_0^2} \exp(-\gamma |z - z_s|) = \frac{jk_0}{2\eta_0 \gamma} \frac{k_x k_y}{k_0^2} \exp(-\gamma |z - z_s|)$$

$$\widetilde{G}_{zx} = -j\omega \left(-j\frac{k_x}{k_0^2}\frac{\partial\widetilde{F}_x}{\partial z}\right) = -\frac{\omega\varepsilon_0}{2\gamma}\frac{k_x|\gamma|}{k_0^2}\exp(-\gamma|z-z_s|) = -\frac{k_0}{2\eta_0\gamma}\frac{k_x|\gamma|}{k_0^2}\exp(-\gamma|z-z_s|)$$

他の成分に関して:

 $\tilde{G}_{yx}, \tilde{G}_{yy}, \tilde{G}_{yz}$ は+y方向を向く単位微小磁流ダイポールを考え、 $\tilde{G}_{zx}, \tilde{G}_{zy}, \tilde{G}_{zz}$ は+z方向を向く単 位微小磁流ダイポールを考えると同様に計算できる。

6. フィールドが x 方向に周期的な場合

6.1 周期関数のフーリエ変換とは?

フーリエ変換の表現を求める際、多くの教科書では周期関数を表現する複素フーリエ級数の周期 を無限大にして孤立波形に近づけて導く。その逆である、一般の孤立波形から周期波形のフーリ エ級数を導く方法はあまり教科書に載っていないので、ここではフーリエ変換の式からフーリエ 級数を導く方法を説明する。

[複素フーリエ級数]

$$f(t)$$
を周期 T の周期波形とすると、次の複素フーリエ級数の関係が成り立つ。
 $f(t) = \sum_{n=-\infty}^{\infty} c_n \exp(jn\omega_0 t)$
 $c_n = \frac{1}{T} \int_T f(t) \exp(-jn\omega_0 t) dt$
ここで、
 $\omega_0 = \frac{2\pi}{T}$

ここで、あえて f(t) は周期関数ではないかもしれないと思って f(t)のフーリエ変換を求めてみる。 $F(\omega) = F[f]$

この $F(\omega)$ を逆フーリエ変換してf(t)を再構成しよう。

$$f(t) = \frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} F(\omega) \exp(j\omega t) d\omega$$
$$= \frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} \left[2\pi \sum_{n=-\infty}^{\infty} c_n \delta(\omega - n\omega_0) \right] \exp(j\omega t) d\omega$$
$$= \sum_{n=-\infty}^{\infty} c_n \int_{\omega=-\infty}^{\infty} \exp(j\omega t) \delta(\omega - n\omega_0) d\omega$$
$$= \sum_{n=-\infty}^{\infty} c_n \exp(jn\omega_0 t)$$

たしかに複素フーリエ級数と一致し、積分表現を和の表現に変換することができた。このように 複素フーリエ級数 c_n を用いて $F(\omega)$ を表現し、 $\int e^{\Sigma}$ の表現にできる。

6.2 電磁界の問題に対応させる

と表現し、6.1節の議論を適用する。

[複素フーリエ級数]

$$f(t)$$
を周期Tの周期波形とすると、次の複素フーリエ級数の関係が成り立つ。
 $f(t) = \sum_{n=-\infty}^{\infty} c_n \exp(-jn\omega_0 t)$
 $c_n = \frac{1}{T} \int_T f(t) \exp(jn\omega_0 t) dt$
ここで、
 $\omega_0 = \frac{2\pi}{T}$

$$F(\omega) = \int_{t=-\infty}^{\infty} f(t) \exp(j\omega t) dt = 2\pi \sum_{n=-\infty}^{\infty} c_n \delta(\omega - n\omega_0)$$

$$\widehat{\mathbf{m}}_{x}(k_{x}) = 2\pi \sum_{n=-\infty}^{\infty} c_{n} \delta(k_{x} - nk_{x0})$$

$$\hbar \epsilon \hbar \varepsilon \cup_{n}$$

$$c_{n} = \frac{1}{p_{x}} \int_{p_{x}} \mathbf{m}_{x}(x) \exp(jnk_{x0}x) dx = \frac{1}{p_{x}} \int_{p_{x}} \mathbf{m}(x, y) \exp(jnk_{x0}x) dx$$

$$k_{x0} = \frac{2\pi}{p_{x}}$$

よって、

$$\widehat{\mathbf{m}}_{x}(k_{x}) = \frac{2\pi}{p_{x}} \sum_{n=-\infty}^{\infty} \int_{p_{x}} \mathbf{m}(x, y) \exp(jnk_{x0}x) dx \delta(k_{x} - nk_{x0})$$

また、

$$\begin{split} \widetilde{\mathbf{m}}(k_{x},k_{y}) &= \int_{y=-\infty}^{\infty} \widehat{\mathbf{m}}_{x}(k_{x})e^{jk_{y}y}dy \\ &= \frac{2\pi}{p_{x}}\sum_{n=-\infty}^{\infty}\int_{xp_{x}}\int_{y=-\infty}^{\infty}\mathbf{m}(x,y)\exp(jnk_{x0}x)\exp(jk_{y}y)dxdy\delta(k_{x}-nk_{x0}) \\ &\quad (\mathbf{m} \text{ ll本当ll周期関数だが、周期でなく、孤立表現を用いると積分区間を無限 にしてもよい) \\ &= 2\pi \sum_{n=-\infty}^{\infty} \left[m_{n} m_{n} \right] \end{split}$$

$$= \frac{2\pi}{p_x} \sum_{n=-\infty}^{\infty} \left[\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} \mathbf{m}(x, y) \exp(jnk_{x0}x) \exp(jk_y y) dx dy \right] \delta(k_x - nk_{x0})$$
$$= \frac{2\pi}{p_x} \sum_{n=-\infty}^{\infty} \widetilde{\mathbf{m}}(nk_{x0}, k_y) \delta(k_x - nk_{x0})$$

この関係を用いると、

$$Y_{ij}^{f} = \frac{1}{(2\pi)^{2}} \int_{k_{x}=-\infty}^{\infty} \int_{k_{y}=-\infty}^{\infty} \widetilde{\mathbf{m}}_{ai}(-k_{x},-k_{y}) \cdot \widetilde{\mathbf{G}}^{f}(k_{x},k_{y},z_{o}-z_{s}) \cdot \widetilde{\mathbf{m}}_{bj}(k_{x},k_{y})dk_{x}dk_{y}$$

$$= \frac{1}{(2\pi)^{2}} \int_{k_{x}=-\infty}^{\infty} \int_{k_{y}=-\infty}^{\infty} \widetilde{\mathbf{m}}_{ai}(-k_{x},-k_{y}) \cdot \widetilde{\mathbf{G}}^{f}(k_{x},k_{y},z_{o}-z_{s}) \cdot \frac{2\pi}{p_{x}} \sum_{n=-\infty}^{\infty} \widetilde{\mathbf{m}}_{bj}(nk_{x0},k_{y})\delta(k_{x}-nk_{x0})dk_{x}dk_{y}$$

$$= \frac{1}{2\pi \cdot p_{x}} \sum_{n=-\infty}^{\infty} \int_{k_{y}=-\infty}^{\infty} \widetilde{\mathbf{m}}_{ai}(-nk_{x0},-k_{y}) \cdot \widetilde{\mathbf{G}}^{f}(nk_{x0},k_{y},z_{o}-z_{s}) \cdot \widetilde{\mathbf{m}}_{bj}(nk_{x0},k_{y})dk_{y}$$

・・・続く。

<u>References</u>

- T. Itoh, "Spectral Domain Immitance Approach for Dispersion Characteristics of Generalized Printed Transmission Lines," IEEE Trans. Microwave Theory Tech., vol.28, no.7, pp.733-736, 1980.
- [2] R. F. Harrington, Field Computation by Moment Methods, IEEE Press, New York, 1993.
- [3] J.C. Maxwell, "A Dynamical Theory of the Electromagnetic Field," Philosophical Transactions of the Royal Society of London, vol.155, pp.459-512, 1865.
- [4] H. Hertz: Electric waves, p.144, Dover pub inc.
- [5] G. Green, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, 1828.
- [6] J. Reine Angew. Math., vol.39, pp.73-89, 1850.
- [7] J. Reine Angew. Math., vol.44, pp.356-374, 1852.
- [8] J. Reine Angew. Math., vol.47, pp.161-221, 1854.
- [9] 数学セミナー、日本評論社、vol.42, no.7/502, 2003 年 7 月号
- [10] C.A. Balanis, Antenna Theory, John Wiley & Sons, Inc., 2nd ed., 1982.
- [11] J. Hirokawa, J. Wettergren, P.-S. Kildal, M. Ando, and N. Goto, "Calculation of External Aperture Admittance and Radiation Pattern of a Narrow Slot Cut Across an Edge of a Sectoral Cylinder in Terms of a Spectrum of two-dimensional Solutions," IEEE Trans. Antennas Propagat., vol.42, no.9, pp.1243-1248, Sept. 1994.
- [12] 森口繁一、宇田川銈久、一松信: 岩波数学公式 III 特殊関数、岩波書店

<u>A. 付録</u>

A.1 S2DS

5.3 節では2次元フーリエ変換を行い、1次元構造の解析のために平面波の和として電磁界を表現 したが、ここでは1次元フーリエ変換を行い[11]、2次元構造の解析のために円筒波の和として 電磁界を表現する。

5.3節の式(16)をフーリエ変換からやり直す。こ方向にフーリエ変換すると、

$$\widetilde{\mathbf{H}} = -j\omega \left[\widetilde{\mathbf{F}} + \frac{1}{k_0^2} \left(\frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y} - jk_z \hat{z} \right) \left\{ \left(\frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y} - jk_z \hat{z} \right) \cdot \widetilde{\mathbf{F}} \right\} \right]$$
(19)

<u>A.1.1_</u>*G*_{*x}の計算

5.3.1 節の計算と同様に進め、 $\frac{\partial}{\partial z_o} = \frac{\partial}{\partial (z_o - z_s)} \frac{\partial (z_o - z_s)}{\partial z_o} = \frac{\partial}{\partial (z_o - z_s)} \cdot 1 = \frac{\partial}{\partial (z_o - z_s)}$ を利用して式(18)の両辺を $z_o - z_s$ でフーリエ変換する。

$$\left(\frac{\partial^2}{\partial x_o^2} + \frac{\partial^2}{\partial y_o^2} - k_z^2\right) \mathbf{\tilde{F}} + k_0^2 \mathbf{\tilde{F}} = -\hat{x} \mathcal{E}_0 \delta(x_o - x_s) \delta(y_o - y_s)$$
$$\mathbf{z} = \mathbf{z} \mathbf{c},$$
$$k_\rho^2 + k_z^2 = k_0^2$$

なので、

$$\left(\frac{\partial^2}{\partial x_o^2} + \frac{\partial^2}{\partial y_o^2} + k_\rho^2\right) \mathbf{\tilde{F}} = -\hat{x} \boldsymbol{\varepsilon}_0 \delta(x_o - x_s) \delta(y_o - y_s)$$

成分ごとに書くと、

$$\begin{cases} \left(\frac{\partial^2}{\partial x_o^2} + \frac{\partial^2}{\partial y_o^2} + k_\rho^2\right) \tilde{F}_x = -\mathcal{E}_0 \delta(x_o - x_s) \delta(y_o - y_s) \\ \left\{\frac{\partial^2}{\partial x_o^2} + \frac{\partial^2}{\partial y_o^2} + k_\rho^2\right) \tilde{F}_y = 0 \\ \left(\frac{\partial^2}{\partial x_o^2} + \frac{\partial^2}{\partial y_o^2} + k_\rho^2\right) \tilde{F}_z = 0 \end{cases}$$

ここで、

$$\frac{\partial}{\partial x_o} = \frac{\partial}{\partial (x_o - x_s)} \frac{\partial (x_o - x_s)}{\partial x_o} = \frac{\partial}{\partial (x_o - x_s)} \cdot 1 = \frac{\partial}{\partial (x_o - x_s)}$$

$$\frac{\partial}{\partial y_o} = \frac{\partial}{\partial (y_o - y_s)} \frac{\partial (y_o - y_s)}{\partial y_o} = \frac{\partial}{\partial (y_o - y_s)} \cdot 1 = \frac{\partial}{\partial (y_o - y_s)}$$
であり、 $x = x_o - x_s$, $y = y_o - y_s$ とすると、

円筒座標系で表現する($\partial/\partial \varphi = 0$ を仮定)と、

$$\begin{cases} \left[\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial}{\partial\rho}\right) + k_{\rho}^{2}\right]\widetilde{F}_{x} = -\varepsilon_{0}\delta(x)\delta(y) \\ \left[\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial}{\partial\rho}\right) + k_{\rho}^{2}\right]\widetilde{F}_{y} = 0 \\ \left[\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial}{\partial\rho}\right) + k_{\rho}^{2}\right]\widetilde{F}_{z} = 0 \end{cases}$$

ここで、ベッセルの微分方程式

$$\frac{1}{z}\frac{d}{dz}\left(z\frac{du}{dz}\right) + \left(1 - \frac{v^2}{z^2}\right)u = 0$$

の解はベッセル関数 J_{ν} とノイマン関数 N_{ν} (あるいは Y_{ν}) $u(z) = AJ_{\nu}(z) + BY_{\nu}(z)$ または Hankel 関数

 $H_{\nu}^{(1)}(z) = J_{\nu}(z) + jY_{\nu}(z), \ H_{\nu}^{(2)}(z) = J_{\nu}(z) - jY_{\nu}(z)$

を用いて、

$$u(z) = AH_v^{(1)}(z) + BH_v^{(2)}(z)$$

と表される。

両辺を k_ρ で割ると、

$$\begin{bmatrix} \frac{1}{k_{\rho}\rho} \frac{\partial}{\partial(k_{\rho}\rho)} \left((k_{\rho}\rho) \frac{\partial}{\partial(k_{\rho}\rho)} \right) + 1 \end{bmatrix} \tilde{F}_{x} = -\frac{\varepsilon_{0}}{k_{\rho}^{2}} \delta(x) \delta(y) \\ \begin{bmatrix} \frac{1}{k_{\rho}\rho} \frac{\partial}{\partial(k_{\rho}\rho)} \left((k_{\rho}\rho) \frac{\partial}{\partial(k_{\rho}\rho)} \right) + 1 \end{bmatrix} \tilde{F}_{y} = 0 \\ \begin{bmatrix} \frac{1}{k_{\rho}\rho} \frac{\partial}{\partial(k_{\rho}\rho)} \left((k_{\rho}\rho) \frac{\partial}{\partial(k_{\rho}\rho)} \right) + 1 \end{bmatrix} \tilde{F}_{z} = 0 \end{cases}$$

ここで、

$$\left[\frac{1}{k_{\rho}\rho}\frac{\partial}{\partial(k_{\rho}\rho)}\left((k_{\rho}\rho)\frac{\partial}{\partial(k_{\rho}\rho)}\right)+1\right]\widetilde{F}=0$$

はベッセルの微分方程式でv=0としたものに等しい。したがって、

$$\tilde{F} = AH_0^{(1)}(k_{\rho}\rho) + BH_0^{(2)}(k_{\rho}\rho)$$

 $H_0^{(1)}(k_
ho
ho)$ は中心に向かって進行する円筒波なので、A=0とする。

$$\widetilde{F} = BH_0^{(2)}(k_o \rho)$$

$$\begin{split} x \, \overrightarrow{n} \,$$

微分、その他の公式(Rは $J, N, H^{(1)(2)}$ を代表する)

$$R'_{\nu}(z) = \frac{1}{2} \{ R_{\nu-1}(z) - R_{\nu+1}(z) \}$$

$$\begin{split} \frac{R_{\nu}(z)}{z} &= \frac{1}{2\nu} \{ R_{\nu-1}(z) + R_{\nu+1}(z) \} \\ &= \pi k_{\rho} \rho B_{x} \{ H_{-1}^{(2)}(k_{\rho} \rho) - H_{1}^{(2)}(k_{\rho} \rho) \} = -2\pi k_{\rho} \rho B_{x} H_{1}^{(2)}(k_{\rho} \rho) = -2\pi B_{x}(k_{\rho} \rho) H_{1}^{(2)}(k_{\rho} \rho) \\ &= \pi k_{\rho} \rho B_{x} \{ H_{-1}^{(2)}(k_{\rho} \rho) - H_{1}^{(2)}(k_{\rho} \rho) \} = \frac{2j}{\pi} \, \& U \}, \\ &= \pi k_{\rho} \rho B_{x} \{ H_{-1}^{(2)}(k_{\rho} \rho) - H_{1}^{(2)}(z) \} = \frac{2j}{\pi} \, \& U \}, \\ &= \pi k_{\rho} \rho B_{x} \{ H_{-1}^{(2)}(k_{\rho} \rho) - H_{1}^{(2)}(z) \} = \frac{2j}{\pi} \, \& U \}, \\ &= \pi k_{\rho} \rho B_{x} \{ H_{-1}^{(2)}(k_{\rho} \rho) - H_{1}^{(2)}(z) \} = \frac{2j}{\pi} \, \& U \}, \\ &= \pi k_{\rho} \rho B_{x} \{ H_{-1}^{(2)}(k_{\rho} \rho) - H_{1}^{(2)}(z) \} = \frac{2j}{\pi} \, \& U \}, \\ &= \pi k_{\rho} \rho B_{x} \{ H_{-1}^{(2)}(k_{\rho} \rho) - H_{1}^{(2)}(z) \} = \frac{2j}{\pi} \, \& U \}, \\ &= \pi k_{\rho} \rho B_{x} \{ H_{-1}^{(2)}(z) - J_{+1}(z) H_{0}^{(2)}(z) = 2j/(\pi z) \\ &= k k_{\rho} \rho B_{x} \{ H_{-1}^{(2)}(z) - J_{1}(z) H_{0}^{(2)}(z) = 2j/(\pi z) \\ &= k k_{\rho} \rho B_{x} \{ H_{-1}^{(2)}(z) - J_{1}(z) H_{0}^{(2)}(z) = 2j/(\pi z) \\ &= J_{0} (z) z H_{1}^{(2)}(z) - J_{1}(z) H_{0}^{(2)}(z) = 2j/(\pi z) \\ &= J_{0} (z) z H_{1}^{(2)}(z) - J_{1}(z) H_{0}^{(2)}(z) = 2j/(\pi z) \\ &= J_{0} (z) z H_{1}^{(2)}(z) = \{ 2j/\pi + zJ_{1}(z) H_{0}^{(2)}(z) \} = J_{0} \rho (z \cdot \log z) \\ &= \lim_{z \to 0} \frac{\log z}{1/z} (B_{x} (B_{x} - B_{x}) + M_{x} (B_{x} - B_{x}) \\ &= h_{0} (z) (z) = \lim_{z \to 0} (z) (z) = \lim_{z \to 0} (z) (z) = \lim_{z \to 0} (z) (z) = 2j/(\pi z) \\ &= \lim_{z \to 0} \log z \\ &= \lim_{z \to 0} \log z \\ &= \lim_{z \to 0} \log z \\ &= \lim_{z \to 0} (z) (z) = \lim_{z \to 0} (z) (z) = \lim_{z \to 0} (z) (z) = \lim_{z \to 0} (z) (z) \\ &= \lim_{z \to 0} (z) (z) = 2j \\ &= \frac{1}{\pi} \\ &= L_{0} (z) (z) = 2j \\ &= L_{0} (z) = 2j \\ &= L_{0} (z) \\ &= L_{0} (z$$

したがって、

$$B_x = \frac{\varepsilon_0}{4j}$$
$$\widetilde{F}_x = B_x H_0^{(1)}(k_\rho \rho) = \frac{\varepsilon_0}{4j} H_0^{(1)}(k_\rho \rho)$$

 $\widetilde{F}_{_y},\ \widetilde{F}_{_z}$ も同様に求める。 $\widetilde{F}_{_x}$ の導出と同じであり、計算過程を見ると、右辺が $\,0\,$ なので結局

$$\widetilde{F}_{v} = \widetilde{F}_{z} = 0$$

となる。

よって、式(19)より、磁流源
$$\hat{x}\delta(x_o - x_s)\delta(y_o - y_s)\delta(z_o - z_s)$$
が作る磁界は、

$$\begin{split} \widetilde{\mathbf{H}} &= -j\omega \Biggl[\widetilde{\mathbf{F}} + \frac{1}{k_0^{2}} \Biggl(\frac{\partial}{\partial x} \widehat{x} + \frac{\partial}{\partial y} \widehat{y} - jk_z \widehat{z} \Biggr) \Biggl\{ \Biggl(\frac{\partial}{\partial x} \widehat{x} + \frac{\partial}{\partial y} \widehat{y} - jk_z \widehat{z} \Biggr) \cdot \widetilde{\mathbf{F}} \Biggr\} \Biggr] \\ &= -j\omega \Biggl[\widehat{x}\widetilde{F}_x + \frac{1}{k_0^{2}} \Biggl(\widehat{\rho} \frac{\partial}{\partial \rho} - jk_z \widehat{z} \Biggr) \Biggl\{ \Biggl(\frac{\partial}{\partial x} \widehat{x} + \frac{\partial}{\partial y} \widehat{y} - jk_z \widehat{z} \Biggr) \cdot (\widehat{x}\widetilde{F}_x) \Biggr\} \Biggr] \\ &= -j\omega \Biggl[\widehat{x}\widetilde{F}_x + \frac{1}{k_0^{2}} \Biggl(\widehat{\rho} \frac{\partial}{\partial \rho} - jk_z \widehat{z} \Biggr) \Biggl\{ \Biggl\{ \frac{\partial\widetilde{F}_x}{\partial x} \Biggr\} \Biggr] \end{split}$$

よって 5.2 節の関係より、

$$\widetilde{G}_{xx} = -j\omega\widetilde{F}_{x} + \frac{1}{k_{0}^{2}}\cos\theta\frac{\partial^{2}\widetilde{F}_{x}}{\partial\rho\partial x}$$

$$\widetilde{G}_{yx} = -j\omega\widetilde{F}_{x} + \frac{1}{k_{0}^{2}}\sin\theta\frac{\partial^{2}\widetilde{F}_{x}}{\partial\rho\partial x}$$

$$\widetilde{G}_{zx} = \frac{-jk_z}{k_0^2} \frac{\partial \widetilde{F}_x}{\partial x}$$

他の成分に関して:

 $\widetilde{G}_{yx}, \widetilde{G}_{yy}, \widetilde{G}_{yz}$ は+y方向を向く単位微小磁流ダイポールを考え、 $\widetilde{G}_{zx}, \widetilde{G}_{zy}, \widetilde{G}_{zz}$ は+z方向を向く単 位微小磁流ダイポールを考えると同様に計算できる。